Using first-principles calculations, we study the electronic and transport properties of rutheniumterpyridine molecules sandwiched between two Au(111) electrodes. We analyse both single and packed molecular devices, more amenable to scaling and realistic integration approaches. The devices display all together robust negative differential resistance features at low bias voltages. Remarkably, the electrical control of the spin transport in the studied systems implies a subtle distribution of the magnetisation density within the biased devices and highlights the key role of the Au(111) electrical contacts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994010 | PMC |
http://dx.doi.org/10.1038/srep31856 | DOI Listing |
ACS Nano
January 2025
International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.
Synergy between superconductivity and ferromagnetism may offer great opportunities in nondissipative spintronics and topological quantum computing. Yet at the microscopic level, the exchange splitting of the electronic states responsible for ferromagnetism is inherently incompatible with the spin-singlet nature of conventional superconducting Cooper pairs. Here, we exploit the recently discovered van der Waals ferromagnets as enabling platforms with marvelous controllability to unravel the myth between ferromagnetism and superconductivity.
View Article and Find Full Text PDFNano Lett
January 2025
Institut de Ciència de Materials de Barcelona, Campus de la UAB, Bellaterra 08193, Spain.
Current-induced torques originating from earth-abundant 3d elements offer a promising avenue for low-cost and sustainable spintronic memory and logic applications. Recently, orbital currents─transverse orbital angular momentum flow in response to an electric field─have been in the spotlight since they allow current-induced torque generation from 3d transition metals. Here, we report a comprehensive study of the current-induced spin and orbital torques in Cu-based magnetic heterostructures.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Microelectronics, Jiangsu University Zhenjiang Jiangsu 212013 China
Lead halide perovskite heterojunctions have been considered as important building blocks for fabricating high-performance photodetectors (PDs). However, the interfacial defects induced non-radiative recombination and interfacial energy-level misalignment induced ineffective carrier transport severely limit the performance of photodetection of resulting devices. Herein, interfacial engineering with a spin-coating procedure has been studied to improve the photodetection performance of CHNHPbI/SnO heterojunction PDs, which were fabricated by sputtering a SnO thin film on ITO glass followed by spin-coating a CHNHPbI thin film.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Physics, University of Ulsan, Ulsan, 44619, South Korea.
Efficient magnetization control is a central issue in magnetism and spintronics. Particularly, there are increasing demands for manipulation of magnetic states in van der Waals (vdW) magnets with unconventional functionalities. However, the electrically induced phase transition between ferromagnetic-to-antiferromagnetic states without external magnetic field is yet to be demonstrated.
View Article and Find Full Text PDFNanoscale
January 2025
Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA.
Quantum dots (QDs) are promising materials for optoelectronic applications, but their widespread adoption requires controllable, selective, and scalable deposition methods. While traditional methods like spin coating and drop casting are suitable for small-scale deposition onto flat substrates, and ink-jet printing offers precision for small areas, these methods struggle with conformal deposition onto non-planar, large area substrates or selective deposition onto large area chips. Electrophoretic deposition (EPD) is an efficient and versatile technique capable of achieving conformal and selective area deposition over large areas, but its application to QD films has been limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!