A study to evaluate the effect of metformin on the immune system was commenced in July 2014. Metformin is one of the most commonly prescribed drugs for type 2 diabetes, and previous studies have reported that metformin has an anti-tumor effect. The aim of this study is to evaluate the efficacy of metformin on the immune system in human cancer patients in vivo. The primary outcome parameter will be the rate change in the population of CD8+ T cells, which produce multiple cytokines.

Download full-text PDF

Source
http://dx.doi.org/10.18926/AMO/54514DOI Listing

Publication Analysis

Top Keywords

metformin immune
12
efficacy metformin
8
cancer patients
8
study evaluate
8
immune system
8
metformin
5
study efficacy
4
immune function
4
function cancer
4
patients study
4

Similar Publications

Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus; however, many patients respond poorly to this drug in clinical practice. The potential involvement of microbiota-mediated intestinal immunity and related signals in metformin responsiveness has not been previously investigated. In this study, we successfully constructed a humanized mouse model by fecal transplantation of the gut microbiota from clinical metformin-treated - responders and non-responders, and reproduced the difference in clinical phenotypes of responsiveness to metformin.

View Article and Find Full Text PDF

Molecular insights into Parkinson's disease and type 2 diabetes mellitus: Metformin's role and genetic pathways explored.

Exp Neurol

January 2025

Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China. Electronic address:

Article Synopsis
  • The study investigates the potential bidirectional relationship between Parkinson's disease (PD) and type 2 diabetes mellitus (T2DM), analyzing shared genetic mechanisms and verifying specific genes involved in the conditions.
  • Using Mendelian randomization, researchers found a positive correlation between PD and T2DM, identifying hub genes that are up-regulated in an animal model, which may indicate shared pathogenic processes.
  • The research highlights metformin's potential role in treating PD aggravated by T2DM by targeting specific genes and pathways related to inflammation and oxidative stress, with molecular docking analysis confirming the stability of metformin's interaction with key proteins.
View Article and Find Full Text PDF

Introduction: Molecular alterations in the PI3K/AKT and Ras/Raf/MEK/ERK pathways are frequently observed in patients with endometrial cancers. However, mTOR inhibitors, such as temsirolimus, have modest clinical benefits. In addition to inducing metabolic changes in cells, metformin activates AMPK, which in turn inhibits the mTOR pathway.

View Article and Find Full Text PDF

Metformin-based nanomedicines for reprogramming tumor immune microenvironment.

Theranostics

January 2025

Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.

Immunotherapy has transformed current cancer management, and it has achieved significant progress over last decades. However, an immunosuppressive tumor microenvironment (TME) diminishes the effectiveness of immunotherapy by suppressing the activity of immune cells and facilitating tumor immune-evasion. Adenosine monophosphate-activated protein kinase (AMPK), a key modulator of cellular energy metabolism and homeostasis, has gained growing attention in anti-tumor immunity.

View Article and Find Full Text PDF

Traditional chemotherapy often encounters failure attributed to drug resistance mediated by tumor-repopulating cells (TRCs) and chemotherapy-triggered immune suppression. The effective inhibition of TRCs and the mitigation of drug-induced immune suppression are pivotal for the successful chemotherapy. Here, TRC-derived microparticles (3D-MPs), characterized by excellent tumor-targeting and high TRC uptake properties, are utilized to deliver metformin and the chemotherapeutic drug doxorubicin ((DOX+Met)@3D-MPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!