Background: Clinicians lack objective tests to help determine the severity of bronchiolitis or to distinguish a viral from bacterial causes of respiratory distress. We hypothesized that children with respiratory syncytial virus (RSV) infection would have a different metabolomic profile compared to those with bacterial infection or healthy controls, and this might also vary with bronchiolitis severity.
Methods: Clinical information and urine-based metabolomic data were collected from healthy age-matched children (n = 37) and those admitted to hospital with a proven infection (RSV n = 55; Non-RSV viral n = 16; bacterial n = 24). Nuclear magnetic resonance (NMR) measured 86 metabolites per urine sample. Partial least squares discriminant analysis (PLS-DA) was performed to create models of separation.
Results: Using a combination of metabolites, a strong PLS-DA model (R2 = 0.86, Q2 = 0.76) was created differentiating healthy children from those with RSV infection. This model had over 90 % accuracy in classifying blinded infants with similar illness severity. Two other models differentiated length of hospitalization and viral versus bacterial infection.
Conclusion: While the sample sizes remain small, this is the first report suggesting that metabolomic analysis of urine samples has the potential to become a diagnostic aid. Future studies with larger sample sizes are required to validate the utility of metabolomics in pediatric patients with respiratory distress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994221 | PMC |
http://dx.doi.org/10.1186/s12879-016-1709-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!