Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The cytoskeleton is a key cellular structure that is important in the control of cellular movement, structure, and sensing. To successfully image the individual cytoskeleton components, high resolution and super-resolution fluorescence imaging methods are needed. This review covers the three basic cytoskeletal elements and the relative benefits and drawbacks of fixed versus live cell imaging before moving on to recent studies using high resolution and super-resolution techniques. The techniques covered include the near-diffraction limited imaging methods of confocal microscopy and TIRF microscopy and the super-resolution fluorescence imaging methods of STORM, PALM, and STED.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6an00731g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!