We propose a closure to the integral equations of molecular theory of solvation, particularly suitable for polar and charged macromolecules in electrolyte solution. This includes such systems as oligomeric polyelectrolytes at a finite concentration in aqueous and various non-aqueous solutions, as well as drug-like compounds in solution. The new closure by Kobryn, Gusarov, and Kovalenko (KGK closure) imposes the mean spherical approximation (MSA) almost everywhere in the solvation shell but levels out the density distribution function to zero (with the continuity at joint boundaries) inside the repulsive core and in the spatial regions of strong density depletion emerging due to molecular associative interactions. Similarly to MSA, the KGK closure reduces the problem to a linear equation for the direct correlation function which is predefined analytically on most of the solvation shells and has to be determined numerically on a relatively small (three-dimensional) domain of strong depletion, typically within the repulsive core. The KGK closure leads to the solvation free energy in the form of the Gaussian fluctuation (GF) functional. We first test the performance of the KGK closure coupled to the reference interaction site model (RISM) integral equations on the examples of Lennard-Jones liquids, polar and nonpolar molecular solvents, including water, and aqueous solutions of simple ions. The solvation structure, solvation chemical potential, and compressibility obtained from RISM with the KGK closure favorably compare to the results of the hypernetted chain (HNC) and Kovalenko-Hirata (KH) closures, including their combination with the GF solvation free energy. We then use the KGK closure coupled to RISM to obtain the solvation structure and thermodynamics of oligomeric polyelectrolytes and drug-like compounds at a finite concentration in electrolyte solution, for which no convergence is obtained with other closures. For comparison, we calculate their solvation structure from molecular dynamics (MD) simulations. We further couple the 3D-RISM integral equation with the 3D-version of the KGK closure, and solve it for molecular mixtures as well as oligomeric polyelectrolytes and drug-like molecules in electrolyte solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/28/40/404003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!