A novel magnetic core/shell structured nano-particle Fe₃O₄@ SiO₂phosphor-removal ahsorbent functionalized with hydrous aluminum oxides (Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O) was synthesized. Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O was characterized by XRD, TEM, VSM and BET nitrogen adsorption experiment. The XRD and TEM results demonstrated the presence of the core/shell structure, with saturated magnetization and specific surface area of 56.00 emu · g⁻¹ and 47.27 m² · g⁻¹, respectively. In batch phosphor adsorption experiment, the Langmuir adsorption maximum capacity was 12.90 mg · g⁻¹ and nearly 96% phosphor could be rapidly removed within a contact time of 40 mm. Adsorption of phosphor on Fe₃O₄@ SiO₂@ Al₂O₃ · nH₂O was highly dependent on pH condition, and the favored pH range was 5-9 in which the phosphor removal rate was above 90%. In the treatment of sewage water, the recommended dosage was 1.25 kg · t⁻¹. In 5 cycles of adsorption-regeneration-desorption experiment, over 90% of the adsorbed phosphor could be desorbed with 1 mol · L⁻¹ NaOH, and Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O could be reused after regeneration by pH adjustment with slightly decreased phosphor removal rate with increasing recycling number, which proved the recyclability of Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O and thereby its potential in recycling of phosphor resources.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!