Photoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes.

Invest Ophthalmol Vis Sci

Department of Medicine Case Western Reserve University, Cleveland, Ohio, United States 2Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, Ohio, United States 3Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States 4Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, United States.

Published: August 2016

Purpose: Loss of photoreceptor cells is associated with retinal vascular degeneration in retinitis pigmentosa, whereas the presence of photoreceptor cells is implicated in vascular degeneration in diabetic retinopathy. To investigate how both the absence and presence of photoreceptors could damage the retinal vasculature, we compared two mouse models of photoreceptor degeneration (opsin-/- and RhoP23H/P23H ) and control C57Bl/5J mice, each with and without diabetes.

Methods: Retinal thickness, superoxide, expression of inflammatory proteins, ERG and optokinetic responses, leukocyte cytotoxicity, and capillary degeneration were evaluated at 1 to 10 months of age using published methods.

Results: Retinal photoreceptor cells degenerated completely in the opsin mutants by 2 to 4 months of age, and visual function subsided correspondingly. Retinal capillary degeneration was substantial while photoreceptors were still present, but slowed after the photoreceptors degenerated. Diabetes did not further exacerbate capillary degeneration in these models of photoreceptor degeneration, but did cause capillary degeneration in wild-type animals. Photoreceptor cells, however, did not degenerate in wild-type diabetic mice, presumably because the stress responses in these cells were less than in the opsin mutants. Retinal superoxide and leukocyte damage to retinal endothelium contributed to the degeneration of retinal capillaries in diabetes, and leukocyte-mediated damage was increased in both opsin mutants during photoreceptor cell degeneration.

Conclusions: Photoreceptor cells affect the integrity of the retinal microvasculature. Deterioration of retinal capillaries in opsin mutants was appreciable while photoreceptor cells were present and stressed, but was less after photoreceptors degenerated. This finding proves relevant to diabetes, where persistent stress in photoreceptors likewise contributes to capillary degeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015983PMC
http://dx.doi.org/10.1167/iovs.16-19415DOI Listing

Publication Analysis

Top Keywords

photoreceptor cells
28
capillary degeneration
20
opsin mutants
16
retinal
12
degeneration
12
vascular degeneration
12
photoreceptor
10
retinal vascular
8
mouse models
8
damage retinal
8

Similar Publications

Evaluation of Diagnostic Performance of Circulating microRNAs as Biomarkers of Retinal Toxicity in the Rat.

J Appl Toxicol

March 2025

Safety Research Department, Discovery Research Laboratories, Nippon Shinyaku Co., Ltd., Kyoto, Japan.

Retinal toxicity is of great concern during drug development due to the irreversibility. Circulating microRNA (miRNA) is reported to be useful for detecting retinal toxicity in rats, although there has been no assessment of the diagnostic performance with statistical analysis. Therefore, we comparatively analyzed the diagnostic performance of circulating miRNAs enriched in the retina such as rno-miR-124-3p, -183-5p, -96-5p, -182, -9a-5p, -125b-5p, -204-5p and -211-5p.

View Article and Find Full Text PDF

Many studies have linked genetic variation to behavior, but few connect to the intervening neural circuits that underlie the arc from sensation to action. Here, we used a combination of genome-wide association (GWA), developmental gene expression, and photoreceptor electrophysiology to investigate the architecture of mate choice behavior in Heliconius cydno butterflies, a clade where males identify preferred mates based on wing color patterns. We first found that the GWA variants most strongly associated with male mate choice were tightly linked to the gene controlling wing color in the K locus, consistent with previous mapping efforts.

View Article and Find Full Text PDF

Mutations in CLRN1 cause Usher syndrome type IIIA (USH3A), an autosomal recessive disorder characterized by hearing and vision loss, and often accompanied by vestibular dysfunction. The identity of the cell types responsible for the pathology and mechanisms leading to vision loss in USH3A remains elusive. To address this, we employed CRISPR/Cas9 technology to delete a large region in the coding and untranslated (UTR) region of zebrafish clrn1.

View Article and Find Full Text PDF

The next-generation gene editing tool, prime editing (PE), is adept at correcting point mutations precisely with high editing efficiency and rare off-target events and shows promising therapeutic value in treating hereditary diseases. Retinitis pigmentosa (RP) is the most common type of inherited retinal dystrophy and is characterized by progressive degeneration of retinal photoreceptors and, consequently, visual decline. To date, effective treatments for RP are lacking.

View Article and Find Full Text PDF

Using Colour to Control Conformation in a Chemical System Containing Multiple Tricyanofuran Photoacids.

Angew Chem Int Ed Engl

March 2025

University of Bristol, School of Chemistry, Cantock's Close, BS8 1TS, Bristol, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Colour vision relies on selective, reversible isomerisation by visible light of a mixture of retinyl chromophores in photoreceptor cells. Synthetic molecular mimics of this wavelength-dependent induction of function are rare, despite the attractiveness of controlling chemical processes solely by the wavelength of incident light. Here, we report a colour-responsive chemical system composed of a cationic receptor complex, two competing chiral anionic ligands and two metastable photoacids with contrasting absorption properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!