In this article, we present a Bayesian hierarchical model for predicting a latent health state from longitudinal clinical measurements. Model development is motivated by the need to integrate multiple sources of data to improve clinical decisions about whether to remove or irradiate a patient's prostate cancer. Existing modeling approaches are extended to accommodate measurement error in cancer state determinations based on biopsied tissue, clinical measurements possibly not missing at random, and informative partial observation of the true state. The proposed model enables estimation of whether an individual's underlying prostate cancer is aggressive, requiring surgery and/or radiation, or indolent, permitting continued surveillance. These individualized predictions can then be communicated to clinicians and patients to inform decision-making. We demonstrate the model with data from a cohort of low-risk prostate cancer patients at Johns Hopkins University and assess predictive accuracy among a subset for whom true cancer state is observed. Simulation studies confirm model performance and explore the impact of adjusting for informative missingness on true state predictions. R code is provided in an online supplement and at http://github.com/rycoley/prediction-prostate-surveillance.

Download full-text PDF

Source
http://dx.doi.org/10.1111/biom.12577DOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
bayesian hierarchical
8
hierarchical model
8
latent health
8
clinical measurements
8
cancer state
8
true state
8
model
6
cancer
6
state
5

Similar Publications

Mapping the knowledge landscape of the PET/MR domain: a multidimensional bibliometric analysis.

Eur J Nucl Med Mol Imaging

January 2025

Huashan Hospital and Human Phenome Institute, Fudan University, 220 Handan Road, Shanghai, 200433, China.

Objective: This study aims to conduct a bibliometric analysis to explore research trends, collaboration patterns, and emerging themes in the PET/MR field based on published literature from 2010 to 2024.

Methods: A detailed literature search was performed using the Web of Science Core Collection (WoSCC) database with keywords related to PET/MR. A total of 4,349 publications were retrieved and analyzed using various bibliometric tools, including VOSviewer and CiteSpace.

View Article and Find Full Text PDF

Background: DNA methylation (DNAm) data from human samples has been leveraged to develop "epigenetic clock" algorithms that predict age and other aging-related phenotypes. Some DNAm clocks were trained using DNAm obtained from blood cells, while other clocks were trained using data from diverse tissue/cell types. To assess how DNAm clocks perform across non-blood tissue types, we applied DNAm algorithms to DNAm data generated from 9 different human tissue types.

View Article and Find Full Text PDF

Background: Cancer requires interdisciplinary intersectoral care. The Care Coordination Instrument (CCI) captures patients' perspectives on cancer care coordination. We aimed to translate, adapt, and validate the CCI for Germany (CCI German version).

View Article and Find Full Text PDF

Randomized controlled trials (RCTs) evaluating anti-cancer agents often lack generalizability to real-world oncology patients. Although restrictive eligibility criteria contribute to this issue, the role of selection bias related to prognostic risk remains unclear. In this study, we developed TrialTranslator, a framework designed to systematically evaluate the generalizability of RCTs for oncology therapies.

View Article and Find Full Text PDF

To investigate the potential of an MRI-based radiomic model in distinguishing malignant prostate cancer (PCa) nodules from benign prostatic hyperplasia (BPH)-, as well as determining the incremental value of radiomic features to clinical variables, such as prostate-specific antigen (PSA) level and Prostate Imaging Reporting and Data System (PI-RADS) score. A restrospective analysis was performed on a total of 251 patients (training cohort, n = 119; internal validation cohort, n = 52; and external validation cohort, n = 80) with prostatic nodules who underwent biparametric MRI at two hospitals between January 2018 and December 2020. A total of 1130 radiomic features were extracted from each MRI sequence, including shape-based features, gray-level histogram-based features, texture features, and wavelet features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!