The growth of organic semiconductor with controllable morphology is a crucial issue for achieving high-performance devices. Here we present the systematic study of the effect of the alkyl chain attached to the functional entity on controlling the growth of oriented microcrystals by dip-coating. Alkylated DTBDT-based molecules with variable chain lengths from n-butyl to n-dodecyl formed into one-dimensional micro- or nanostripe crystals at different pulling speeds. The alignment and ordering are significantly varied with alkyl chain length, as is the transistor performance. Highly uniform oriented and higher-molecular-order crystalline stripes with improved field-effect mobility can be achieved with an alkyl-chain length of around 6. We attribute this effect to the alkyl-chain-length-dependent packing, solubility, and self-assembly behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.6b01349 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!