Background: The prognosis of wide implants tends to be controversial. While wider implants were initially expected to result in a larger osseointegration area and have higher levels of primary stability, they were reported to have a relatively high rate of failure. The clinical outcome of ultrawide implants of more than 6 mm in diameter was evaluated through a retrospective study.
Methods: The investigation was conducted on patients who had received ultrawide implant (≥6 mm diameter) placements in Seoul National University Bundang Hospital from January 2008 to December 2013. Complications were investigated during the maintenance period, and marginal bone loss was measured using periapical radiography. Primary stability immediately after the implant placement and second stability after second surgery or during impression were measured using Osstell Mentor (Osstell, Sweden) as an implant stability quotient (ISQ).
Results: Fifty-eight implants were placed in 53 patients (30 male, 23 female), and they were observed for an average of 50.06 ± 23.49 months. The average ISQ value increased from 71.22 ± 10.26 to 77.48 ± 8.98 ( < 0.005). The primary and secondary stability shows significantly higher at the mandible than at the maxilla ( < 0.001). However, mean survival rate shows 98.28 %. Average marginal bone loss of 0.018 and 0.045 mm were measured at 12 and 24 months after the loading and 0.14 mm at final follow-up date (mean 46.25 months), respectively. Also in this study, the bone loss amount was noticeably small compared to regular implants reported in previous studies.
Conclusions: The excellent clinical outcome of ultrawide implants was confirmed. It was determined that an ultrawide implant can be used as an alternative when the bone quality in the posterior teeth is relatively low or when a previous implant has failed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974300 | PMC |
http://dx.doi.org/10.1186/s40902-016-0075-z | DOI Listing |
Angew Chem Int Ed Engl
December 2024
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
Electroreduction of CO to CO represents a highly promising way for artificial carbon cycling, but obtaining high selectivity over a wide potential window remains a challenge due to the sluggish CO generation and diffusion kinetics. Here we report an integration of long-range P modified bismuth atomic site on an ordered macroporous carbon skeleton with mesoporous "wall" (MW-BiN-POMC) for efficient electroreduction of CO. In-depth in situ investigations with theoretical computations reveal that the incorporation of long-range P atom is able to strengthen the orbital interaction between the C 2p of CO and Bi 6p, thereby establishing an electronic transport bridge for the activation of CO molecule.
View Article and Find Full Text PDFNanomicro Lett
December 2024
School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China.
Ammonium level in body fluids serves as one of the critical biomarkers for healthcare, especially those relative to liver diseases. The continuous and real-time monitoring in both invasive and non-invasive manners is highly desired, while the ammonium concentrations vary largely in different body fluids. Besides, the sensing reliability based on ion-selective biosensors can be significantly interfered by potassium ions.
View Article and Find Full Text PDFSensors (Basel)
November 2024
The School of Electrical Engineering, Xinjiang University, Shengli Road 666#, Urumqi 830046, China.
This paper presents an innovative, compact, dual-element, implantable, ultra-wideband, circularly polarized multiple-input multiple-output (MIMO) antenna designed to operate within the 2.45 GHz industrial, scientific, and medical band, and both of its radiating units are circularly polarized antennas with polarization diversity. Specifically, antenna-1 exhibits left-handed circular polarization properties, while antenna-2 demonstrates right-handed circular polarization properties.
View Article and Find Full Text PDFSci Rep
October 2024
School of Electrical Engineering, Xinjiang University, Ürümqi, 830047, China.
This paper presents a miniaturized circularly polarized (CP) implantable antenna Ultra-wide bandwidth for continuous blood pressure monitoring. The miniature and CP of the antenna are gained by using a new slot method. The symmetry slots in the radiation patch, two T-shape slots in the GND, coupled with the use of a short pin make the designed antenna with good physical and radiation properties.
View Article and Find Full Text PDFMaterials (Basel)
August 2024
Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.
β-GaO is an ultra-wide bandgap semiconductor (E~4.8 eV) of interest for many applications, including optoelectronics. Undoped GaO emits light in the UV range that can be tuned to the visible region of the spectrum by rare earth dopants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!