Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Migration phenology is largely determined by how animals respond to seasonal changes in environmental conditions. Our perception of the relationship between migratory behavior and environmental cues can vary depending on the spatial scale at which these interactions are measured. Understanding the behavioral mechanisms behind population-scale movements requires knowledge of how individuals respond to local cues. We show how time-to-event models can be used to predict what factors are associated with the timing of an individual's migratory behavior using data from GPS collared polar bears (Ursus maritimus) that move seasonally between sea ice and terrestrial habitats. We found the concentration of sea ice that bears experience at a local level, along with the duration of exposure to these conditions, was most associated with individual migration timing. Our results corroborate studies that assume thresholds of >50% sea ice concentration are necessary for suitable polar bear habitat; however, continued periods (e.g., days to weeks) of exposure to suboptimal ice concentrations during seasonal melting were required before the proportion of bears migrating to land increased substantially. Time-to-event models are advantageous for examining individual movement patterns because they account for the idea that animals make decisions based on an accumulation of knowledge from the landscapes they move through and not simply the environment they are exposed to at the time of a decision. Understanding the migration behavior of polar bears moving between terrestrial and marine habitat, at multiple spatiotemporal scales, will be a major aspect of quantifying observed and potential demographic responses to climate-induced environmental changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979725 | PMC |
http://dx.doi.org/10.1002/ece3.2233 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!