Noncontact Elastic Wave Imaging Optical Coherence Elastography for Evaluating Changes in Corneal Elasticity Due to Crosslinking.

IEEE J Sel Top Quantum Electron

Department of Biomedical Engineering at the University of Houston, Houston, TX 77004 USA and and the Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk 634050, Russia, phone: 832-842-8834; fax: 713-743-0226.

Published: December 2015

The mechanical properties of tissues can provide valuable information about tissue integrity and health and can assist in detecting and monitoring the progression of diseases such as keratoconus. Optical coherence elastography (OCE) is a rapidly emerging technique, which can assess localized mechanical contrast in tissues with micrometer spatial resolution. In this work we present a noncontact method of optical coherence elastography to evaluate the changes in the mechanical properties of the cornea after UV-induced collagen cross-linking. A focused air-pulse induced a low amplitude (μm scale) elastic wave, which then propagated radially and was imaged in three dimensions by a phase-stabilized swept source optical coherence tomography (PhS-SSOCT) system. The elastic wave velocity was translated to Young's modulus in agar phantoms of various concentrations. Additionally, the speed of the elastic wave significantly changed in porcine cornea before and after UV-induced corneal collagen cross-linking (CXL). Moreover, different layers of the cornea, such as the anterior stroma, posterior stroma, and inner region, could be discerned from the phase velocities of the elastic wave. Therefore, because of noncontact excitation and imaging, this method may be useful for detection of ocular diseases such as keratoconus and evaluation of therapeutic interventions such as CXL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990138PMC
http://dx.doi.org/10.1109/JSTQE.2015.2510293DOI Listing

Publication Analysis

Top Keywords

elastic wave
20
optical coherence
16
coherence elastography
12
mechanical properties
8
diseases keratoconus
8
cornea uv-induced
8
collagen cross-linking
8
wave
5
noncontact elastic
4
wave imaging
4

Similar Publications

Effects of Hydration and a Hyaluronic Acid-Containing Lozenge on Voice Parameters in Conjunction With a Vocal Loading Test.

J Speech Lang Hear Res

January 2025

Division of Phoniatrics and Pediatric Audiology, Department of Otolaryngology, Munich University Hospital and Faculty of Medicine, Munich University (Ludwig-Maximilians-Universität), Germany.

Purpose: This study explores the effects of water intake and a hyaluronic acid (HA)-containing lozenge on acoustic measurements and vocal oscillation patterns investigated after a vocal loading test (VLT).

Method: Ten healthy subjects (five females, five males) read out loud a standardized text for 10 min at a target level of 80 dB(A), measured 30 cm from the mouth, under three conditions but each after fasting for 2 hr: (a) drinking 0.7 l of water, (b) sucking an HA-containing lozenge, and (c) neither of both before the VLT.

View Article and Find Full Text PDF

The inferior colliculus (IC) has traditionally been regarded as an important relay in the auditory pathway, primarily involved in relaying auditory information from the brainstem to the thalamus. However, this study uncovers the multifaceted role of the IC in bridging auditory processing, sensory prediction, and reward prediction. Through extracellular recordings in monkeys engaged in a sound duration-based deviation detection task, we observed a 'climbing effect' in neuronal firing rates, indicative of an enhanced response over sound sequences linked to sensory prediction rather than reward anticipation.

View Article and Find Full Text PDF

Elastic Wave Packets Crossing a Space-Time Interface.

Phys Rev Lett

December 2024

Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France.

The interaction between waves and evolving media challenges traditional conservation laws. We experimentally investigate the behavior of elastic wave packets crossing a moving interface that separates two media with distinct propagation properties, observing the noninvariance of wavelength and frequency. Our experimental setup employs an elastic strip whose local stretching can be dynamically altered by pulling one end at a constant velocity.

View Article and Find Full Text PDF

The identification of vibration and reconstruction of sound fields of plate structures are important for understanding the vibroacoustic characteristics of complex structures. This paper presents a data-physics driven (DPD) model integrated with transfer learning (DPDT) for high-precision identification and reconstruction of vibration and noise radiation of plate structures. The model combines the Kirchhoff-Helmholtz integral equation with convolutional neural networks, leveraging physical information to reduce the need for extensive data.

View Article and Find Full Text PDF

Distributed acoustic sensing (DAS) is a technology that uses optical fiber as a sensing unit to detect external vibration signals. Due to the high resolution and high sensitivity of DAS, it has great application potential in the detection of vibration events. However, high detection performance will bring limitations to DAS in multi-source detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!