Development of a Rational Design Space for Optimizing Mixing Conditions for Formation of Adhesive Mixtures for Dry-Powder Inhaler Formulations.

J Pharm Sci

Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269; Institute of Material Sciences, University of Connecticut, Storrs, Connecticut 06269. Electronic address:

Published: January 2017

The purpose of the present study was to develop guidance toward rational choice of blenders and processing conditions to make robust and high performing adhesive mixtures for dry-powder inhalers and to develop quantitative experimental approaches for optimizing the process. Mixing behavior of carrier (LH100) and AstraZeneca fine lactose in high-shear and low-shear double cone blenders was systematically investigated. Process variables impacting the mixing performance were evaluated for both blenders. The performance of the blenders with respect to the mixing time, press-on forces, static charging, and abrasion of carrier fines was monitored, and for some of the parameters, distinct differences could be detected. A comparison table is presented, which can be used as a guidance to enable rational choice of blender and process parameters based on the user requirements. Segregation of adhesive mixtures during hopper discharge was also investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2016.07.012DOI Listing

Publication Analysis

Top Keywords

adhesive mixtures
12
mixtures dry-powder
8
rational choice
8
development rational
4
rational design
4
design space
4
space optimizing
4
mixing
4
optimizing mixing
4
mixing conditions
4

Similar Publications

Periweissella beninensis LMG 25373, belonging to the recently established Periweissella genus, exhibits unique motility and high adhesion capabilities, indicating significant probiotic potential, including resilience under simulated gastrointestinal conditions. This study demonstrates for the first time that P. beninensis LMG 25373^T produces a dextran-type exopolysaccharide (EPS) with a distinctive high degree of branching (approximately 71 % of α-(1 → 6)-linkages and 29 % α-(1 → 3)-linkages).

View Article and Find Full Text PDF

Durable PVA-based hydrogel sponge with cellulose whiskers embedded in the 3D interconnected channels for efficient oil/water separation.

Carbohydr Polym

March 2025

School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China. Electronic address:

Superhydrophilic hydrogel was typically used as the membrane coating on various substrates for oil/water separation. Nevertheless, these coatings may suffer from such limitations as poor adhesion strength and abrasion-resistance. Thus, the facile construction of hydrogel sponge with 3D connecting channels would be an ideal choice.

View Article and Find Full Text PDF

Background: This study investigates the potential effects of elemene injection on pancreatic cancer using network pharmacology and experimental validation.

Methods: GEO database were used to acquire genes which are differentially expressed between pancreatic cancer tissue and normal tissue. The vigorous energetic ingredients were identified in research and the object genes were obtained from BATMAN-TCM.

View Article and Find Full Text PDF

Decavanadate Compound Displays In Vitro and In Vivo Antitumor Effect on Melanoma Models.

Bioinorg Chem Appl

January 2025

Institut Pasteur de Tunis, LR20IPT01 Biomolécules, Venins et Application Théranostiques (LBVAT), University of Tunis El Manar, Tunis 1002, Tunisia.

The efficacy of available treatments for melanoma is limited by side effects and the rapidly emerging resistance to treatment. In this context, the decavanadate compounds represent promising tools to design efficient therapeutic agents. In our study, we synthesized a dimagnesium disodium decavanadate icosahydrate compound (MgNaVO·20HO) and investigated its structure stability as well as its antimelanoma effects.

View Article and Find Full Text PDF

Robust, Fluorine-Free Superhydrophobic Films on Glass via Epoxysilane Pretreatment.

Langmuir

January 2025

Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

Durable and fluorine-free superhydrophobic films were fabricated by a simple two-step process involving the pretreatment of glass substrates with an epoxysilane, which acted as an adhesive. The next step involved the aerosol-assisted chemical vapor deposition of a simple mixture of polydimethylsiloxane (PDMS) and SiO nanoparticles (NPs). Various parameters were studied, such as deposition time as well as PDMS and SiO loadings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!