Betaine is a major water-soluble component of Lycium chinensis. Although there are reports about the protective effects of betaine on hepatic steatosis, the underlying mechanisms are unclear. We used db/db mice and HepG2 cells to examine the mechanism underlying betaine-mediated protection against hepatic steatosis. Here, we showed increased hepatic lipid accumulation in db/db mice, which is associated with increased activation of lipogenic transcription factors including forkhead box O1 (FoxO1) and peroxisome proliferator-activated receptor gamma (PPARγ), whereas betaine administration by oral gavage reversed these characteristics. We investigated whether betaine ameliorates hepatic steatosis by inhibiting FoxO1/PPARγ signaling in HepG2 cells. Although adenovirus-mediated FoxO1 overexpression notably increased mRNA expression levels of PPARγ and its target genes including FAS and ACC, betaine treatment reversed them. Furthermore, betaine inhibited FoxO1 binding to the PPARγ promoter and PPARγ transcriptional activity in HepG2 cells, which was previously shown to induce hepatic steatosis. We concluded that betaine ameliorates hepatic steatosis, at least in part, by inhibiting the FoxO1 binding to PPARγ and their downstream lipogenic signaling cascade.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.6b02644 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!