During the course of infection, Mycobacterium tuberculosis (Mtb) is exposed to diverse redox stresses that trigger metabolic and physiological changes. How these stressors are sensed and relayed to the Mtb transcriptional apparatus remains unclear. Here, we provide evidence that WhiB6 differentially regulates the ESX-1 and DosR regulons through its Fe-S cluster. When challenged with NO, WhiB6 continually activates expression of the DosR regulons but regulates ESX-1 expression through initial activation followed by gradual inhibition. Comparative transcriptomic analysis of the holo- and reduced apo-WhiB6 complemented strains confirms these results and also reveals that WhiB6 controls aerobic and anaerobic metabolism, cell division, and virulence. Using the Mycobacterium marinum zebrafish infection model, we find that holo- and apo-WhiB6 modulate levels of mycobacterial infection, granuloma formation, and dissemination. These findings provide fresh insight into the role of WhiB6 in mycobacterial infection, dissemination, and disease development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2016.07.080 | DOI Listing |
Pathogens
November 2024
Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
The ESX-1 secretion system is critical for the virulence of as well as for conjugation in the saprophytic model . EsxB (CFP-10) and EsxA (ESAT-6) are secreted effectors required for the function of ESX-1 systems. While some transcription factors regulating the expression of and have been identified, little work has addressed their promoter structures or other determinants of their expression.
View Article and Find Full Text PDFJ Bacteriol
September 2024
Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA.
Pathogenic mycobacteria are a significant global health burden. The ESX-1 secretion system is essential for mycobacterial pathogenesis. The secretion of ESX-1 substrates is required for phagosomal lysis, which allows the bacteria to enter the macrophage cytoplasm, induce a Type I IFN response, and spread to new host cells.
View Article and Find Full Text PDFAdv Biol (Weinh)
October 2024
Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India.
Mycobacterium tuberculosis (M. tb) is a significant intracellular pathogen responsible for numerous infectious disease-related deaths worldwide. It uses ESX-1 T7SS to damage phagosomes and to enter the cytosol of host cells after phagocytosis.
View Article and Find Full Text PDFPLoS Pathog
May 2024
Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, United States of America.
Mycobacterium tuberculosis (Mtb) infects lung myeloid cells, but the specific Mtb-permissive cells and host mechanisms supporting Mtb persistence during chronic infection are incompletely characterized. We report that after the development of T cell responses, CD11clo monocyte-derived cells harbor more live Mtb than alveolar macrophages (AM), neutrophils, and CD11chi monocyte-derived cells. Transcriptomic and functional studies revealed that the lysosome pathway is underexpressed in this highly permissive subset, characterized by less lysosome content, acidification, and proteolytic activity than AM, along with less nuclear TFEB, a regulator of lysosome biogenesis.
View Article and Find Full Text PDFmBio
April 2024
Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA.
Bacterial pathogens use protein secretion systems to transport virulence factors and regulate gene expression. Among pathogenic mycobacteria, including and , the ESAT-6 system 1 (ESX-1) secretion is crucial for host interaction. Secretion of protein substrates by the ESX-1 secretion system disrupts phagosomes, allowing mycobacteria cytoplasmic access during macrophage infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!