Photocycloaddition reaction of atropisomeric maleimides: mechanism and selectivity.

Phys Chem Chem Phys

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Published: September 2016

We report a density functional study on the mechanism of the [2+2] photocyclization of atropisomeric maleimides. Experimentally, the reaction is known to proceed through the triplet state. We have located all relevant S0 and T1 minima and transition states, as well as the T1/S0 crossing points, and mapped eight stepwise photocyclization pathways for four different conformers in the T1 state that lead to distinct regioisomers. In the preferred four pathways (one for each conformer) the initially formed C-C bond involves the terminal carbon atom of the alkene moiety. This regioselectivity originates from electrostatic preferences (arising from the charge distribution in the polarized C[double bond, length as m-dash]C double bonds) and from the different thermodynamic stability of the resulting triplet diradical intermediates (caused by electron donation effects that stabilize the radical centers). The formation of the second C-C bond is blocked in the T1 state by prohibitively high barriers and thus occurs after intersystem crossing to the ground state. Furthermore, we rationalize substitution effects on enantioselectivity and diastereoselectivity and identify their origin.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp04919bDOI Listing

Publication Analysis

Top Keywords

atropisomeric maleimides
8
c-c bond
8
photocycloaddition reaction
4
reaction atropisomeric
4
maleimides mechanism
4
mechanism selectivity
4
selectivity report
4
report density
4
density functional
4
functional study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!