The separation of aminoglutethimide enantiomers by the continuous multicolumn chromatographic processes were investigated experimentally and theoretically, where the columns were packed with cellulose tris 3,5-dimethylphenyl-carbamate stationary phase (brand name Chiralcel OD) and mobile phase was a mixture of n-hexane and ethanol with monoethanolamine additive. The continuous enantioseparation processes included a synchronous shifting process (SMB) and an asynchronous shifting process (VARICOL), which allowed reducing the column number (here from six-column SMB to five-column VARICOL process). Transport-dispersive model with the consideration of both intraparticle mass transfer resistance and axial dispersion was adopted to design and optimize the operation conditions for the separation of aminoglutethimide enantiomers by SMB process and VARICOL process. According to the optimized operation conditions, experiments were carried out on VARICOL-Micro unit using five-column VARICOL process with 1/1.5/1.5/1 configuration and six-column SMB process with 1/2/2/1 configuration. Products of R-aminoglutethimide (R-AG) enantiomer and S-aminoglutethimide (S-AG) enantiomer with more than 99.0% purity were obtained continuously from extract stream and raffinate stream, respectively. Furthermore, the experiemntal data obtained from five-column VARICOL process were compared with that from six-column SMB process, the feasibility and efficiency for the separation of guaifenesin enantiomers by VARICOL processes were evaluated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2016.08.031 | DOI Listing |
J Chromatogr A
July 2022
Chemical Engineering Program/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil.
The interest in the simulated moving bed (SMB) technology lies in its variants. Some of them that have a high potential to increase the performance in enantioseparations are the ModiCon and the ModiCon+VariCol. These variants are based on the modulation of feed concentration and a combination of feed concentration and length of zones modulations.
View Article and Find Full Text PDFJ Chromatogr A
August 2021
Chemical Engineering Program/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil.
The VariCol and ModiCon processes are two variants of the simulated moving bed (SMB) process, characterized by the modulation of the length of zones of the chromatographic column train and the feed concentration. These features give more flexibility than the conventional operation, leading to essential improvements in the separation and purification of mixtures. The optimal performance comparison of these two variants, the hybrid formed by their combination, and the conventional SMB process are scarce in the literature.
View Article and Find Full Text PDFJ Chromatogr A
December 2020
Programa de Engenharia Química PEQ/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil.
The VariCol process is a variant of the conventional simulated moving bed (SMB) process, distinguished by the asynchronous shifting of the inlet and outlet ports of the chromatographic column train. This feature allows for a more flexible operation in column utilization and can also achieve higher separation performances. However, to take full benefit out of it, the operating parameters, such as the strategy for port switching, must be optimal.
View Article and Find Full Text PDFJ Chromatogr A
October 2016
Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
The separation of aminoglutethimide enantiomers by the continuous multicolumn chromatographic processes were investigated experimentally and theoretically, where the columns were packed with cellulose tris 3,5-dimethylphenyl-carbamate stationary phase (brand name Chiralcel OD) and mobile phase was a mixture of n-hexane and ethanol with monoethanolamine additive. The continuous enantioseparation processes included a synchronous shifting process (SMB) and an asynchronous shifting process (VARICOL), which allowed reducing the column number (here from six-column SMB to five-column VARICOL process). Transport-dispersive model with the consideration of both intraparticle mass transfer resistance and axial dispersion was adopted to design and optimize the operation conditions for the separation of aminoglutethimide enantiomers by SMB process and VARICOL process.
View Article and Find Full Text PDFJ Chromatogr A
October 2014
Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
The separation of guaifenesin enantiomers by both simulated moving bed (SMB) process and Varicol process was investigated experimentally and theoretically, where the columns were packed with cellulose tris 3,5-dimethylphenylcarbamate (Chiralcel OD) stationary phase and a mixture of n-hexane and ethanol was used as mobile phase. The operation conditions were designed based on the separation region with the consideration of mass transfer resistance and axial dispersion, and the experiments to separate guaifenesin enantiomers were carried out on VARICOL-Micro unit using SMB process with the column configuration of 1/2/2/1 and Varicol process with the column configuration of 1/1.5/1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!