The hereditary spastic paraplegias (HSPs) are heterogeneous neurodegenerative disorders with over 50 known causative genes. We identified a recurrent mutation in KCNA2 (c.881G>A, p.R294H), encoding the voltage-gated K(+) -channel, KV 1.2, in two unrelated families with HSP, intellectual disability (ID), and ataxia. Follow-up analysis of > 2,000 patients with various neurological phenotypes identified a de novo p.R294H mutation in a proband with ataxia and ID. Two-electrode voltage-clamp recordings of Xenopus laevis oocytes expressing mutant KV 1.2 channels showed loss of function with a dominant-negative effect. Our findings highlight the phenotypic spectrum of a recurrent KCNA2 mutation, implicating ion channel dysfunction as a novel HSP disease mechanism. Ann Neurol 2016.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129488PMC
http://dx.doi.org/10.1002/ana.24762DOI Listing

Publication Analysis

Top Keywords

recurrent mutation
8
mutation kcna2
8
hereditary spastic
8
kcna2 novel
4
novel hereditary
4
spastic paraplegia
4
paraplegia ataxia
4
ataxia hereditary
4
spastic paraplegias
4
paraplegias hsps
4

Similar Publications

Therapeutic effect of novel drug candidate, PRG-N-01, on NF2 syndrome-related tumor.

Neuro Oncol

December 2024

Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.

Background: NF2-related schwannomatosis (NF2-SWN) is associated with multiple benign tumors in the nervous system. NF2-SWN, caused by mutations in the NF2 gene, has developed into intracranial and spinal schwannomas. Because of the high surgical risk and frequent recurrence of multiple tumors, targeted therapy is necessary.

View Article and Find Full Text PDF

Mutations in Cholangiocarcinoma: Prevalence, Prognostic Value, and G12/G13 Detection in Cell-Free DNA.

Cancer Genomics Proteomics

December 2024

Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;

Background/aim: Cholangiocarcinoma (CCA) is an aggressive hepatobiliary malignancy characterized by genomic heterogeneity. KRAS mutations play a significant role in influencing patient prognosis and guiding therapeutic decision-making. This study aimed to determine the prevalence and prognostic significance of KRAS mutations in CCA, asses the detection of KRAS G12/G13 mutations in plasma cell-free DNA (cfDNA), and evaluate the prognostic value of KRAS G12/G13 mutant allele frequency (MAF) in cfDNA in relation to clinicopathological data and patient survival.

View Article and Find Full Text PDF

Cholangiocarcinoma Targeted Therapies: Mechanisms of Action and Resistance.

Am J Pathol

December 2024

Massachusetts General Hospital Cancer Center, Krantz Family Center for Cancer Research, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts. Electronic address:

Cholangiocarcinoma is an aggressive bile duct malignancy with heterogeneous genomic features. Although most patients receive standard-of-care chemotherapy/immunotherapy, genomic changes that can be targeted with established or emerging therapeutics are common. Accordingly, precision medicine strategies are transforming the next-line treatment for patient subsets.

View Article and Find Full Text PDF

Embryonic-type neuroectodermal tumors (ENTs) arising from testicular germ cell tumors (GCTs) is a relatively common type of somatic transformation in GCTs with poor prognosis and limited therapeutic options, particularly when patients develop disease recurrence or metastasis. Knowledge of key events driving this transformation is limited to the paucity of comprehensive genomic data. We performed a retrospective database search in a CLIA- and CAP-certified laboratory for testicular GCT-derived ENTs that had previously undergone NGS-based comprehensive genomic profiling during the course of clinical care.

View Article and Find Full Text PDF

Biomarkers that identify tumors with better/worse prognosis can help reduce treatment costs and contribute to patient survival. In urothelial bladder cancer (UBC), accurate prediction of recurrence and progression is essential to inform therapeutic management. Herein, we explore the role of genetic variants of xenobiotic metabolic pathways in UBC susceptibility and prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!