Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Netherton syndrome (NS) is caused by mutations in the SPINK5 gene. Several Spink5-deficient mouse models were generated to understand the mechanisms of NS in vivo. However, Spink5-deficiency in mice is associated with postnatal lethality that hampers further analysis. Here we present a viable mouse model for NS generated by mosaic inactivation of the Spink5 gene. We propose that these mice are a valuable experimental tool to study NS, especially for long-term studies evaluating potential therapeutic compounds. Furthermore, we show that mosaic inactivation of a gene using TALENs or CRISPR/Cas9 systems can be used to study lethal phenotypes in adult mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/hsz-2016-0194 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!