Since the highly conserved exosome complex mediates the degradation and processing of multiple classes of RNAs, it almost certainly controls diverse biological processes. How this post-transcriptional RNA-regulatory machine impacts cell fate decisions and differentiation is poorly understood. Previously, we demonstrated that exosome complex subunits confer an erythroid maturation barricade, and the erythroid transcription factor GATA-1 dismantles the barricade by transcriptionally repressing the cognate genes. While dissecting requirements for the maturation barricade in , we discovered that the exosome complex is a vital determinant of a developmental signaling transition that dictates proliferation/amplification versus differentiation. Exosome complex integrity in erythroid precursor cells ensures Kit receptor tyrosine kinase expression and stem cell factor/Kit signaling, while preventing responsiveness to erythropoietin-instigated signals that promote differentiation. Functioning as a gatekeeper of this developmental signaling transition, the exosome complex controls the massive production of erythroid cells that ensures organismal survival in homeostatic and stress contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5040589PMC
http://dx.doi.org/10.7554/eLife.17877DOI Listing

Publication Analysis

Top Keywords

exosome complex
24
developmental signaling
12
maturation barricade
8
signaling transition
8
cells ensures
8
exosome
6
complex
5
complex orchestrates
4
orchestrates developmental
4
signaling
4

Similar Publications

The development of multitargeted drugs is urgent for ischemic stroke. TRPV1 and TRPM8 are important targets of ischemic stroke. Previous drug candidate screening has identified that muscone, l-borneol, and ferulic acid may target TRPV1 and TRPM8 for ischemic stroke.

View Article and Find Full Text PDF

Dual-target magneto-immunoassay with bifunctional nanohybrids for breast cancer exosome detection.

Talanta

January 2025

Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State, 54896, Republic of Korea; School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State, 54896, Republic of Korea. Electronic address:

Exosomes, crucial for intercellular communication, hold potential as noninvasive liquid biopsy biomarkers especially in early breast cancer detection benefitted from the distinctive "cancer signature" on their membrane surface. Yet, the present methodologies of exosomes for breast cancer detection have involved the implementation of only a single member from the tetraspanin protein group as a biomarker. Moreso, due to the high concentration of exosomes in complex body fluids, there is a compelling need to measure a small concentration of cancer-derived exosomes with a low background noise signal.

View Article and Find Full Text PDF

The Dual Role of Cellular Senescence in Macrophages: Unveiling the Hidden Driver of Age-Related Inflammation in Kidney Disease.

Int J Biol Sci

January 2025

Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China.

Aging is a complex biological process that involves the gradual decline of cellular, tissue, and organ functions. In kidney, aging manifests as tubular atrophy, glomerulosclerosis, and progressive renal function decline. The critical role of senescence-associated macrophage in diseases, particularly kidney diseases, is increasingly recognized.

View Article and Find Full Text PDF

Background: Wound healing is a complex procedure frequently delayed in patients with underlying chronic conditions. Despite essential advances in tissue engineering and regenerative medicine, wound healing remains challenging, warranting novel methods for promoting wound healing. It has been demonstrated that exosomes are one of the main secretory products of different cell types, such as Mesenchymal Stem Cells (MSCs), for regulating various biological processes, including wound healing.

View Article and Find Full Text PDF

Immortalization of Mesenchymal Stem Cells for Application in Regenerative Medicine and Their Potential Risks of Tumorigenesis.

Int J Mol Sci

December 2024

Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.

Regenerative medicine utilizes stem cells to repair damaged tissues by replacing them with their differentiated cells and activating the body's inherent regenerative abilities. Mesenchymal stem cells (MSCs) are adult stem cells that possess tissue repair and regenerative capabilities and immunomodulatory properties with a much lower risk of tumorigenicity, making them a focus of numerous clinical trials worldwide. MSCs primarily exert their therapeutic effects through paracrine effects via secreted factors, such as cytokines and exosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!