A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems. | LitMetric

Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems.

Int J Pharm

Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France. Electronic address:

Published: November 2016

Dexamethasone-loaded, poly(lactic-co-glycolic acid) (PLGA) microparticles were prepared using an oil-in-water solvent extraction/evaporation method. The drug loading was varied from 2.4 to 61.9%, keeping the mean particle size in the range of 52-61μm. In vitro drug release was characterized by up to 3 phases: (1) an (optional) initial burst release, (2) a phase with an about constant drug release rate, and (3) a final, again rapid, drug release phase. The importance and durations of these phases strongly depended on the initial drug loading. To better understand the underlying mass transport mechanisms, the microparticles were thoroughly characterized before and after exposure to the release medium. The initial burst release seems to be mainly due to the dissolution of drug particles with direct access to the microparticles' surface. The extent of the burst was negligible at low drug loadings, whereas it exceeded 60% at high drug loadings. The second release phase seems to be controlled by limited drug solubility effects and drug diffusion through the polymeric systems. The third drug release phase is likely to be a consequence of substantial microparticle swelling, leading to a considerable increase in the systems' water content and, thus, fundamentally increased drug mobility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2016.08.032DOI Listing

Publication Analysis

Top Keywords

drug release
16
release phase
16
drug
12
release
9
plga microparticles
8
drug loading
8
initial burst
8
burst release
8
drug loadings
8
better understanding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!