A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interaction of PPARα With the Canonic Wnt Pathway in the Regulation of Renal Fibrosis. | LitMetric

AI Article Synopsis

  • PPARα has protective effects for the kidneys but the exact mechanism is not fully understood, especially in relation to renal fibrosis and diabetes.
  • Administration of PPARα agonist fenofibrate and its overexpression reduced levels of fibrotic factors and inhibited Wnt signaling, which is a pathway linked to kidney damage.
  • The study suggests that PPARα may interact with Wnt signaling at a coreceptor level and that its antioxidant properties contribute to its protective effects against diabetic nephropathy.

Article Abstract

Peroxisome proliferator-activated receptor-α (PPARα) displays renoprotective effects with an unclear mechanism. Aberrant activation of the canonical Wnt pathway plays a key role in renal fibrosis. Renal levels of PPARα were downregulated in both type 1 and type 2 diabetes models. The PPARα agonist fenofibrate and overexpression of PPARα both attenuated the expression of fibrotic factors, and suppressed high glucose-induced or Wnt3a-induced Wnt signaling in renal cells. Fenofibrate inhibited Wnt signaling in the kidney of diabetic rats. A more renal prominent activation of Wnt signaling was detected both in PPARα mice with diabetes or obstructive nephropathy and in PPARα tubular cells treated with Wnt3a. PPARα did not block the transcriptional activity of β-catenin induced by a constitutively active mutant of lipoprotein receptor-related protein 6 (LRP6) or β-catenin. LRP6 stability was decreased by overexpression of PPARα and increased in PPARα tubular cells, suggesting that PPARα interacts with Wnt signaling at the Wnt coreceptor level. 4-Hydroxynonenal-induced reactive oxygen species production, which resulted in LRP6 stability, was suppressed by overexpression of PPARα and dramatically enhanced in PPARα tubular cells. Diabetic PPARα mice showed more prominent NADPH oxidase-4 overexpression compared with diabetic wild-type mice, suggesting that the inhibitory effect of PPARα on Wnt signaling may be ascribed to its antioxidant activity. These observations identified a novel interaction between PPARα and the Wnt pathway, which is responsible, at least partially, for the therapeutic effects of fenofibrate on diabetic nephropathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127249PMC
http://dx.doi.org/10.2337/db16-0426DOI Listing

Publication Analysis

Top Keywords

wnt signaling
20
pparα
15
wnt pathway
12
overexpression pparα
12
pparα tubular
12
tubular cells
12
wnt
9
interaction pparα
8
renal fibrosis
8
pparα mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!