Towards a less biased dissolution of chitosan.

Anal Chim Acta

Western Sydney University, School of Science and Health, Australian Centre for Research on Separation Sciences (ACROSS), Parramatta, 2150, Australia.

Published: September 2016

The dissolution of polysaccharides is notoriously challenging, especially when one needs a "true" solution. Factors influencing chitosan's solubility include composition, also known as degree of acetylation (DA). The dissolution of chitosan was investigated by visual observation, size-exclusion chromatography (SEC), pressure mobilization (PM), free-solution capillary electrophoresis (CE) and real-time solution-state NMR spectroscopy. Aqueous HCl dissolves around 15% more chitosan than the commonly used aqueous acetic acid (AcOH), however aggregates were detected in SEC suggesting incomplete dissolution. Significant deacetylation of chitosan over the period needed for dissolution at high temperature was observed by NMR spectroscopy in DCl by about 20% of the initial DA value. Accurate DA determination by NMR spectroscopy may thus be possible only in the solid state (with a precision within 1% on the DA % scale above a DA of 10%). Overall a compromise between maximum solubilization and minimum degradation is required in attempting to obtain a "true" solution of chitosan. The completeness of the dissolution may be more influenced by the average DA than by molar mass.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2016.06.021DOI Listing

Publication Analysis

Top Keywords

nmr spectroscopy
12
dissolution chitosan
8
"true" solution
8
chitosan
5
dissolution
5
biased dissolution
4
chitosan dissolution
4
dissolution polysaccharides
4
polysaccharides notoriously
4
notoriously challenging
4

Similar Publications

NMR spectroscopy presents boundless opportunities for understanding the structure, dynamics, and function for a broad range of scientific applications. Solid-state NMR (SSNMR), in particular, provides novel insights into biological and material systems that are not amenable to other approaches. However, a major bottleneck is the extent of user training and the difficulty of obtaining reproducible, high-quality experimental results, especially for the sophisticated multidimensional pulse sequences that are essential to provide site-resolved measurements in large biomolecules.

View Article and Find Full Text PDF

Analyzing the chemical composition of different kinds of acrylic cement is necessary to understand their properties and suitability for curing bone defects. Conducting various chemical tests can give valuable insight into the composition, viscosity, and performance characteristics of each kind of cement, Therefore, our study aimed to find safety standards and the effectiveness of these products for medical applications. The polymeric characterization was determined by Nuclear Magnetic Resonance (H-NMR) spectroscopy and Fourier-transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spectroscopy is a valuable diagnostic tool limited by low sensitivity due to low nuclear spin polarization. Hyperpolarization techniques, such as dissolution dynamic nuclear polarization, significantly enhance sensitivity, enabling real-time tracking of cellular metabolism. However, traditional high-field NMR systems and bioreactor platforms pose challenges, including the need for specialized equipment and fixed sample volumes.

View Article and Find Full Text PDF

Inhibitory Effect on the Tyrosinase Activity and Low Cytotoxicity of Monounsaturated Long-Chain Chelating Fatty Ester.

An Acad Bras Cienc

January 2025

Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Laboratório de Investigação Sistemática em Biotecnologia e Biodiversidade Molecular, Rua Augusto Corrêa, 01, 66075-110 Belém, PA, Brazil.

In the present study, 5-Hydroxy-2-(Oleoyloxymethyl) -4H-pyran-4-one (KMO 3), and their chelated with Cu(II) and Fe(III) ions were synthesized to explore their inhibitory activity against tyrosinase and cytotoxicity. To this end, the structures of the obtained compounds were confirmed by ATR/FT-IR, 13C and 1H-NMR, and UV-vis techniques. The results show that chelating fatty ester presents the bands at 1567m, 1511w cm-1 attributed to the coordinated carbonyl (Cu(II)←[O=C]2), and the bands at 1540m, 1519m cm-1 which were attributed to the coordinated carbonyl (Fe(III)←[O=C]3).

View Article and Find Full Text PDF

The development of molecular species with switchable magnetic properties has been a long-standing challenge in chemistry. One approach involves binding an analyte, such as protons, to a compound to trigger a change in magnetism. Transition metal complexes have been targeted for this type of magnetic modulation because they can undergo changes in their spin states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!