A novel method of carbon fiber microelectrode activation using spark discharge was demonstrated and compared to conventional electrochemical pretreatment by potential cycling. The spark discharge was performed at 800 V between the microelectrode connected to positive pole of the power supply and platinum counter electrode. Spark discharge led both to trimming of the fiber tip into conical shape and to the modification of carbon fiber microelectrode with platinum, as proven by scanning electron microscopy and electron dispersive X-ray spectroscopy. After the characterization of electrochemical properties using ferricyanide voltammetry, the activated electrodes were used for electrochemical analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine, an oxidative stress marker. Subnanomolar detection limits (0.55 nmol L(-1)) in high-performance liquid chromatography were achieved for spark platinized electrodes incorporated into the flow detection cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2016.06.044 | DOI Listing |
Small
January 2025
Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China.
Photocatalytic hydrogen production is currently considered a clean and sustainable route to meet the energy and environmental issues. Among, heterojunction photocatalysts have been developed to improve their photocatalytic efficiency. Defect engineering of heterojunction photocatalysts is attractive due to it can perform as electron trap and change the band structure to optimize the interfacial separation rate of photogenerated electron-hole pairs.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2025
Solar System Exploration Division, NASA Goddard Space Center, Greenbelt, Maryland, USA.
Rationale: Extraterrestrial amines and ammonia are critical ingredients for the formation of astrobiologically important compounds such as amino acids and nucleobases. However, conventional methods for analyzing the composition and isotopic ratios of volatile amines suffer from lengthy derivatization and purification procedures, high sample mass consumption, and chromatographic interferences from derivatization reagents and non-target compounds.
Methods: Here we demonstrate a highly efficient method to analyze the composition and compound specific isotopic ratios of C to C amines as well as ammonia based on solid phase micro-extraction (SPME) on-fiber derivatization.
Angew Chem Int Ed Engl
January 2025
Fujian University of Technology, College of Ecological Environment and Urban Construction, 69, Xuefu South Road, Fuzhou 350118, China, 350118, Fuzhou, CHINA.
Rational exploration of cost-effective, durable, and high-performance electrode materials is imperative for advancing the progress of capacitive deionization (CDI). The integration of multicomponent layered double hydroxides (LDHs) with conjugated conductive metal-organic frameworks (c-MOFs) to fabricate bifunctional heterostructure electrode materials is considered a promising strategy. Herein, the fabrication of hierarchical conductive MOF/LDH/CF nanoarchitectures (M-CAT/LDH/CF) as CDI anodes via a controllable grafted-growth strategy is reported.
View Article and Find Full Text PDFSci Rep
January 2025
Nonprofitable Organization Touche NPO, Sapporo, 060-004, Japan.
In this study, we explore the structural intricacies of cellulose, a polymer composed of glucose monomers arranged in a linear chain, primarily investigated through solid-state NMR techniques. Specifically, we employ low-field proton nuclear magnetic resonance (H-NMR) to delve into the diverse hydrogen atom types within the cellulose molecule. The low-field H-NMR technique allows us to discern these hydrogen atoms based on their distinct chemical shifts, providing valuable insights into the various functional groups present in cellulose.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Chemical Engineering and Technology, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Beichen District, Xiping Road No. 5340, Tianjin, 300401, China.
A kind of sulfur-doped carbon dots was prepared which were encapsulated with polydopamine (S-CDs@PDA) that has fluorescence response on polyethylene (PE) microplastics (MPs). Modified membranes were constructed using S-CDs@PDA for MP detection. Through heating and vacuum filtration process, yellow emission from the modified membrane appeared because of the combination between S-CDs@PDA and PE MPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!