Before applying nanotechnologies in biomedical and environmental areas it is advised to study interactions of nanoparticles and other nanomaterials with biomacromolecule present in living system. Moreover there is scarcity of reports on interactions between nanoparticles and biomaterials. In present report a rapid, ecofriendly method of fabricating stable gold nanoparticles (AuNPs) using latex of Jatropha curcas is reported for the first time. AuNPs found to have characteristic absorption maxima centered at 540nm, multiple irregular shapes with size range from 20 to 50nm and have crystalline nature. Latex fabricated AuNPs were found to inhibit catalytic potential of trypsin (a vital enzyme responsible for digestion, insecticide resistance and in several disease conditions). The interactions between AuNPs and trypsin were analyzed by UV-vis spectrophotometry and microwave plasma-atomic emission spectrometry which suggests formation of trypsin-AuNPs complex responsible for lowering catalytic activity of trypsin. Transmission electron microscopy, Fourier transform infrared spectroscopy and particle size distribution studies further confirm complex formation between trypsin and AuNPs. Diverse interactions of metal nanoparticles with proteins such as covalent interaction, electrostatic interactions and binding to SH group of amino acid may be the reasons behind inhibition of trypsin activity. In vivo studies on serum of several vectors and agriculturally important pests supported instrumental results on AuNPs induced trypsin inhibition. This work will bring a new research direction to explore eco-friendly nanoparticle in insect control via inhibition of enzyme catalytic potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.enzmictec.2016.06.005 | DOI Listing |
Heliyon
January 2025
Advanced Materials Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.
Herein, we report the biosynthesis of pure NiO and NiO nanoparticles doped with Silver (Ag@NiO NPs) 2, 4, 6, and 8 mol% from aloe vera extract by solution combustion method at 400 °C and calcined at 500 °C for 3 h. By utilizing silver-doped NiO nanoparticles synthesized with Aloe Vera latex, which not only enhances the material's properties but also promotes environmentally friendly fabrication methods. The morphological, structural elemental compositions were analysed through SEM, HRTEM, SAED, XRD and EDAX.
View Article and Find Full Text PDFMolecules
December 2024
Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Waterborne polyurethane, with a mechanical strength comparable to solvent-based types, is eco-friendly and safe, using water as a dispersion medium. Polyacrylate excels in film formation and weather resistance but suffers from "hot stickiness and cold brittleness". Merging polyurethane and polyacrylate creates advanced hybrids, while organosilicon enhances properties but is restricted due to hydrolytic crosslinking.
View Article and Find Full Text PDFACS Appl Eng Mater
December 2024
Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.
Int J Biol Macromol
January 2025
Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China. Electronic address:
Composites derived from plant fibers are promising reinforcing materials for engineering because of their renewable and easily available characteristics. In this study, a simple pretreatment method was developed to fabricate structurally intact bamboo cellulose scaffolds. Water-stable, flexible, impact-resistant, and high damping ratio bamboo-based rubber composites were synthesized using carboxylated styrene-butadiene latex-impregnated 3D bamboo scaffolds.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
Efforts to improve the energy density and cycling stability of lithium-ion batteries have focused on replacing LiCoO in cathodes with LiNiMnCoO. However, reliance on polyvinylidene fluoride (PVdF) as the binder limits the application of the LiNiMnCoO composite electrode for lithium-ion batteries. Here, we evaluate the electrochemical properties of a LiNiMnCoO (NMC111) powder electrode formed using a waterborne-styrene-acrylic-rubber (SAR) latex binder combined with sodium carboxymethylcellulose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!