d-Amino acids have recently attracted much attention in various research fields including medical, clinical and food industry due to their important biological functions that differ from l-amino acid. Most chiral amino acid separation techniques require complicated derivatization procedures in order to achieve the desirable chromatographic behavior and detectability. Thus, the aim of this research is to develop a highly sensitive analytical method for the enantioseparation of chiral amino acids without any derivatization process using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By optimizing MS/MS parameters, we established a quantification method that allowed the simultaneous analysis of 18 d-amino acids with high sensitivity and reproducibility. Additionally, we applied the method to food sample (vinegar) for the validation, and successfully quantified trace levels of d-amino acids in samples. These results demonstrated the applicability and feasibility of the LC-MS/MS method as a novel, effective tool for d-amino acid measurement in various biological samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2016.07.008 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States.
Visible light-driven pyridoxal radical biocatalysis has emerged as a new strategy for the stereoselective synthesis of valuable noncanonical amino acids in a protecting-group-free fashion. In our previously developed dehydroxylative C-C coupling using engineered PLP-dependent tryptophan synthases, an enzyme-controlled unusual α-stereochemistry reversal and pH-controlled enantiopreference were observed. Herein, through high-throughput photobiocatalysis, we evolved a set of stereochemically complementary PLP radical enzymes, allowing the synthesis of both l- and d-amino acids with enhanced enantiocontrol across a broad pH window.
View Article and Find Full Text PDFFront Microbiol
January 2025
Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
Strain LCG007, isolated from Lu Chao Harbor's intertidal water, phylogenetically represents a novel genus within the family Rhodobacteraceae. Metabolically, it possesses a wide array of amino acid metabolic genes that enable it to thrive on both amino acids or peptides. Also, it could hydrolyze peptides containing D-amino acids, highlighting its potential role in the cycling of refractory organic matter.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
Residual dipolar coupling (RDC) not only contributes to the dynamic analysis of proteins but also provides a robust route for the structure determination of small organic compounds. An essential prerequisite for this methodology is the availability of alignment media. Herein, a series of novel peptide-based alignment media are generated by introducing D-type or halogen-bearing amino acids for RDC measurements.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, PR China.
Based on the enhanced peroxidase-like activity of carbon dots nanozymes (CDszymes), with a specific oxidation reaction of D-amino acid oxidase catalysing the formation of HO from D-amino acid, an ultrasensitive sensing platform, was constructed for the quantitative detection of D-amino acids in saliva. With the increase of D-amino acids concentration, the blue color of catalytic product gradually deepend, the fluorescence CDszymes gradually quenched, and the temperature gradually increased. Using D-alanine as D-amino acid models, the detection limits of D-alanine in colorimetric/photothermal/fluorescent mode were 0.
View Article and Find Full Text PDFFood Chem
January 2025
Mane SEA PTE LTD, 3 Biopolis Drive, #07-17/18/19 Synapse, 138623, Singapore. Electronic address:
Oolong tea contains diverse isomers, such as amino acids. D-amino acids, compared with their L-enantiomers, exhibit distinct properties, influencing both the flavor and bioactivity of the tea. However, the analysis of these isomers remains challenging, especially the simultaneous determination of structural and chiral isomers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!