Methylmercury (MeHg) accumulation in rice is an emerging human health issue, but uptake pathways and translocation into the grain remain poorly understood. We grew Oryza sativa plants in pots of wetland soil amended with an enriched mercury isotope (94.3% Hg) tracer, alongside unvegetated control pots, and assessed both ambient and tracer MeHg and inorganic Hg (IHg) concentrations in soil and plant tissues at three growth stages. Based on similar ratios of ambient:tracer MeHg concentrations in soil and plant tissues, we provide the first direct evidence that MeHg is first synthesized in saturated soil and subsequently translocated to rice grains. There is no evidence of in planta methylation of IHg, but significant losses of MeHg from plant tissues between flowering and maturity indicates likely in planta demethylation. In this greenhouse experiment, lower percent of tracer MeHg in vegetated soils at late growth stages suggests that rice plants reduce the net MeHg accumulation capacity of soils, although the mechanism remains unclear. For IHg, roots accumulated Hg from the soil, straw from the soil and the atmosphere, and grain almost entirely from the atmosphere. Management strategies that aim to reduce MeHg accumulation in rice should focus on mercury methylation in paddy soils, but IHg reductions will depend on regional controls of atmospheric Hg.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2016.08.068 | DOI Listing |
Environ Pollut
December 2024
College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Faculty of Architecture and Engineering, Guizhou Polytechnic of Construction, Guiyang, 551400, China.
Although the use of foliar spraying with organic matter has been extensively studied and applied to reduce heavy metals in plants, research on its application for reducing mercury (Hg) accumulation in plants, particularly the more toxic methylmercury (MeHg), remains scarce. Furthermore, previous researches on the barrier mechanisms of foliar spraying primarily concentrated on the effects of spraying agents on plant physiological and biochemical indicators, with limited focus on their impacts on soil environment. Herein, the dynamic effects and mechanisms of organic foliar spraying materials, including earthworm liquid fertilizer (ELF), Tween 80 (T80), and citric acid (CA), on soil Hg methylation and accumulation in lettuce were investigated using pot experiment.
View Article and Find Full Text PDFEnviron Int
December 2024
National Institute for Minamata Disease, Minamata, Kumamoto 867-0008, Japan.
Environ Pollut
December 2024
Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, And Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China. Electronic address:
The potential health risks of microplastics (MPs) and their combined exposure with heavy metals such as mercury (Hg) in aquatic environment are increasingly concerned recently. In this work, zebrafish embryos were exposed to different levels of polystyrene microplastics (PS-MPs, ∼0.1 μm) coupled with Hg(II) or/and MeHg at 20 μg/L, to investigate the tissue biodistribution and accumulation of PS-MPs and Hg species, and their interaction, as well as embryo toxicity, oxidative stress and metabolic profiles.
View Article and Find Full Text PDFSci Total Environ
December 2024
Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN, United States of America.
Toxicol Ind Health
December 2024
College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China.
Methylmercury (MeHg) is a potent hepatotoxin with a complex mechanism of inducing liver injury. Ferroptosis, an iron-dependent form of non-apoptotic cell death, is implicated in various toxicological responses, but its role in MeHg-induced liver damage remains under investigation. In this study, we established an acute liver injury (ALI) model in mice via gavage of MeHg (0, 40, 80, 160 μmol/kg).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!