Physicochemical properties and antioxidant activity of α-tocopherol loaded nanoliposome's containing DHA and EPA.

Food Chem

Department of Food Science and Technology, National Nutrition Science and Food Science Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Published: January 2017

AI Article Synopsis

  • The study focused on creating α-tocopherol loaded nanoliposomes to carry DHA and EPA, and examined their physicochemical properties like particle size and oxidation levels.
  • The liposomes had sizes ranging from 82.4 to 107.2 nm and showed less lipid oxidation at higher temperatures compared to control samples.
  • Findings indicated that α-tocopherol effectively enhances the antioxidant properties of DHA and EPA within the liposomes during storage.

Article Abstract

The aim of this study was to prepare α-tocopherol loaded nanoliposomes as carriers of DHA and EPA and to investigate their physicochemical properties, such as peroxide value (PV), volatile compounds (VOCs), particle size, size distribution, zeta potential and morphology of the liposomes. The particle size of liposomes was in the range of 82.4-107.2nm. The highest extent of lipid oxidation was observed at 40°C for 90days, with the lowest PV and propanal levels for a nanoliposome formulation in comparison with the control sample. The zeta potential of the nanoliposomes was decreased during storage. No significant change in the PV and zeta potential of the liposome formulations with α-tocopherol was observed at 4°C after 90days (0.14meq/kg and -43.5mV, respectively). This study demonstrated that incorporation of α-tocopherol into liposomes contributes a significant antioxidant effect on DHA and EPA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2016.07.139DOI Listing

Publication Analysis

Top Keywords

dha epa
12
zeta potential
12
physicochemical properties
8
α-tocopherol loaded
8
particle size
8
properties antioxidant
4
antioxidant activity
4
α-tocopherol
4
activity α-tocopherol
4
loaded nanoliposome's
4

Similar Publications

This study aimed to evaluate the intake, performance, quality, and fatty acids (FA) composition of the meat of three Nigerian sheep breeds (Balami, Uda, and Yankasa) fed two different hays, Brachiaria decumbens or Digitaria smutsii. A total of sixty sheep, twenty from each breed, Balami, Uda, and Yankasa, were used, with average body weights of 24.7 ± 3.

View Article and Find Full Text PDF

Objective: To explore the differences in fat and fatty acids content between freshwater and saltwater fish.

Methods: The fat and fatty acids content in 83 fish meat samples from four regions(Hainan, Jiangsu, Fujian, and Guangxi) were detected by national standard method. Mann-Whitney U tests and t-tests were used to compare the differences in fat and major fatty acid content between freshwater and saltwater fish.

View Article and Find Full Text PDF

Polyketide Synthase Acyltransferase Domain Swapping for Enhanced EPA Recognition and Efficient Coproduction of EPA and DHA in sp.

J Agric Food Chem

December 2024

School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.

Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are important polyunsaturated fatty acids (PUFAs) used as nutritional supplements. The natural EPA content in sp. is low, and traditional strategies to increase EPA levels often compromise DHA content or lipid accumulation, hindering industrial coproduction.

View Article and Find Full Text PDF

This study investigated the stabilization mechanism, storage stability, and in vitro digestion characteristics of oil-in-water fish oil emulsions stabilized by β-Lg modified through enzymatic hydrolysis, glycation, and fibrillation. The stabilization mechanism was elucidated by comparing droplet size, ζ-potential, interfacial protein thickness, and microstructure. Results showed that β-Lg modified through these combined processes formed a three-dimensional network, providing superior stabilization, while other modified proteins stabilized emulsions via surface adsorption.

View Article and Find Full Text PDF

Mechanism of differentiated and targeted catalysis in complex lipid system under lipase and lipoxygenase mediation.

Food Chem

December 2024

School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

The regulation of reaction rate differentiation, catalytic precursor differentiation, and end-product differentiation during enzyme-mediated reactions within complex lipid systems is a key area of research in flavor regulation. A multilayer lipid oxidation model, utilizing Plaice bone oil (PBO), lipase, and lipoxygenase, was employed to investigate oxidation differences between various lipids and corresponding flavor formation patterns. Lipase treatment resulted in higher levels of non‑oxygenated volatile compounds and saturated aldehydes, whereas lipoxygenase treatment increased oxygenated compounds, particularly (E)-2-hexenal, 1-penten-3-one, and 2-pentylfuran.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!