The genetic, proteomic, disease and pharmacological studies have generated rich data in protein interaction, disease regulation and drug activities useful for systems-level study of the biological, disease and drug therapeutic processes. These studies are facilitated by the established and the emerging computational methods. More recently, the network descriptors developed in other disciplines have become more increasingly used for studying the protein-protein, gene regulation, metabolic, disease networks. There is an inadequate coverage of these useful network features in the public web servers. We therefore introduced upto 313 literature-reported network descriptors in PROFEAT web server, for describing the topological, connectivity and complexity characteristics of undirected unweighted (uniform binding constants and molecular levels), undirected edge-weighted (varying binding constants), undirected node-weighted (varying molecular levels), undirected edge-node-weighted (varying binding constants and molecular levels) and directed unweighted (oriented process) networks. The usefulness of the PROFEAT computed network descriptors is illustrated by their literature-reported applications in studying the protein-protein, gene regulatory, gene co-expression, protein-drug and metabolic networks. PROFEAT is accessible free of charge at http://bidd2.nus.edu.sg/cgi-bin/profeat2016/main.cgi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862332PMC
http://dx.doi.org/10.1093/bib/bbw071DOI Listing

Publication Analysis

Top Keywords

network descriptors
12
binding constants
12
molecular levels
12
studying protein-protein
8
protein-protein gene
8
constants molecular
8
levels undirected
8
varying binding
8
networks profeat
8
disease
5

Similar Publications

Molecular dynamics simulation is an important tool in computational materials science and chemistry, and in the past decade it has been revolutionized by machine learning. This rapid progress in machine learning interatomic potentials has produced a number of new architectures in just the past few years. Particularly notable among these are the atomic cluster expansion, which unified many of the earlier ideas around atom-density-based descriptors, and Neural Equivariant Interatomic Potentials (NequIP), a message-passing neural network with equivariant features that exhibited state-of-the-art accuracy at the time.

View Article and Find Full Text PDF

Machine learning Hubbard parameters with equivariant neural networks.

NPJ Comput Mater

January 2025

Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Density-functional theory with extended Hubbard functionals (DFT +  + ) provides a robust framework to accurately describe complex materials containing transition-metal or rare-earth elements. It does so by mitigating self-interaction errors inherent to semi-local functionals which are particularly pronounced in systems with partially-filled d and f electronic states. However, achieving accuracy in this approach hinges upon the accurate determination of the on-site and inter-site Hubbard parameters.

View Article and Find Full Text PDF

Tissue regeneration after a wound occurs through three main overlapping and interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase. The macrophages in the non-healing wounds remain in the inflammatory loop, but their phenotypes can be changed interactions with nanofibre-based scaffolds mimicking the organisation of the native structural support of healthy tissues.

View Article and Find Full Text PDF

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

This paper presents an approach for event recognition in sequential images using human body part features and their surrounding context. Key body points were approximated to track and monitor their presence in complex scenarios. Various feature descriptors, including MSER (Maximally Stable Extremal Regions), SURF (Speeded-Up Robust Features), distance transform, and DOF (Degrees of Freedom), were applied to skeleton points, while BRIEF (Binary Robust Independent Elementary Features), HOG (Histogram of Oriented Gradients), FAST (Features from Accelerated Segment Test), and Optical Flow were used on silhouettes or full-body points to capture both geometric and motion-based features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!