Background: The design complexity of critical care ventilators (CCVs) can lead to use errors and patient harm. In this study, we present the results of a comparison of four CCVs from market leaders, using a rigorous methodology for the evaluation of use safety and user experience of medical devices.

Methods: We carried out a comparative usability study of four CCVs: Hamilton G5, Puritan Bennett 980, Maquet SERVO-U, and Dräger Evita V500. Forty-eight critical care respiratory therapists participated in this fully counterbalanced, repeated measures study. Participants completed seven clinical scenarios composed of 16 tasks on each ventilator. Use safety was measured by percentage of tasks with use errors or close calls (UE/CCs). User experience was measured by system usability and workload metrics, using the Post-Study System Usability Questionnaire (PSSUQ) and the National Aeronautics and Space Administration Task Load Index (NASA-TLX).

Results: Nine of 18 post hoc contrasts between pairs of ventilators were significant after Bonferroni correction, with effect sizes between 0.4 and 1.09 (Cohen's d). There were significantly fewer UE/CCs with SERVO-U when compared to G5 (p = 0.044) and V500 (p = 0.020). Participants reported higher system usability for G5 when compared to PB980 (p = 0.035) and higher system usability for SERVO-U when compared to G5 (p < 0.001), PB980 (p < 0.001), and V500 (p < 0.001). Participants reported lower workload for G5 when compared to PB980 (p < 0.001) and lower workload for SERVO-U when compared to PB980 (p < 0.001) and V500 (p < 0.001). G5 scored better on two of nine possible comparisons; SERVO-U scored better on seven of nine possible comparisons. Aspects influencing participants' performance and perception include the low sensitivity of G5's touchscreen and the positive effect from the quality of SERVO-U's user interface design.

Conclusions: This study provides empirical evidence of how four ventilators from market leaders compare and highlights the importance of medical technology design. Within the boundaries of this study, we can infer that SERVO-U demonstrated the highest levels of use safety and user experience, followed by G5. Based on qualitative data, differences in outcomes could be explained by interaction design, quality of hardware components used in manufacturing, and influence of consumer product technology on users' expectations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4992292PMC
http://dx.doi.org/10.1186/s13054-016-1431-1DOI Listing

Publication Analysis

Top Keywords

system usability
16
user experience
12
evaluation safety
8
safety user
8
critical care
8
servo-u compared
8
higher system
8
usability
6
usability ventilators
4
ventilators comparative
4

Similar Publications

This study explores the integration of telerehabilitation, virtual reality, and serious games technologies in addressing physical disabilities. Specifically, it focuses on game-based telerehabilitation for patients with stroke, Parkinson's disease, and multiple sclerosis undergoing home-based rehabilitation. Utilising the PICO approach, a search in Scopus and PubMed until February 21st, 2024, identified 31 relevant English articles out of 258 initially considered.

View Article and Find Full Text PDF

Global disparities in neurosurgical care necessitate innovations addressing affordability and accuracy, particularly for critical procedures like ventriculostomy. This intervention, vital for managing life-threatening intracranial pressure increases, is associated with catheter misplacement rates exceeding 30% when using a freehand technique. Such misplacements hold severe consequences including haemorrhage, infection, prolonged hospital stays, and even morbidity and mortality.

View Article and Find Full Text PDF

Transcutaneous Electrical Nerve Stimulation (TENS) and Electronic Muscle Stimulation (EMS) are non-invasive therapies widely used for pain relief and neuromuscular adaptation. However, the clinical research supporting the efficacy of TENS in chronic pain management is limited by significant methodological flaws, including small sample sizes and inconsistent reporting of stimulation parameters. TENS modulates pain perception through various techniques, targeting specific nerve fibers and pain pathways.

View Article and Find Full Text PDF

Digital pathology is now a standard component of the pathology workflow, offering numerous benefits such as high-detail whole slide images and the capability for immediate case sharing between hospitals. Recent advances in deep learning-based methods for image analysis make them a potential aid in digital pathology. However, A significant challenge in developing computer-aided diagnostic systems for pathology is the lack of intuitive, open-source web applications for data annotation.

View Article and Find Full Text PDF

The UNICA Sleep HRV Analysis tool: an integrated open-source tool for heart rate variability analysis during sleep.

Physiol Meas

January 2025

Department of Electrical and Electronic Engineering (DIEE), University of Cagliari, Via Marengo, Cagliari, Sardegna, 09123, ITALY.

Heart rate variability (HRV) analysis during sleep plays a key role for understanding autonomic nervous system function and assessing cardiovascular health. The UNICA Sleep HRV analysis (UNICA-HRV) tool is a novel, open-source MATLAB tool designed to fill the gap in current HRV analysis tools. In particular, the integration of ECG and HRV data with hypnogram information, which illustrates the progression through the different sleep stages, ease the computation of HRV metrics in polysomnographic recordings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!