The retinoic acid-related orphan receptors (RORs) regulate several physiological and pathological processes, including immune functions, development and cancer. To study the potential role of RORs in melanoma progression, we analysed RORα and RORγ expression in nevi and primary melanomas and non-lesional skin and metastases in relation to melanoma clinico-pathomorphological features. The expression of RORα and RORγ was lower in melanomas than in nevi and decreased during melanoma progression, with lowest levels found in primary melanomas at stages III and IV and in melanoma metastases. Their expression correlated with pathomorphological pTNM parameters being low in aggressive tumors and being high in tumors showing histological markers of good prognosis. Higher nuclear levels of RORα and RORγ and of cytoplasmic RORγ correlated with significantly longer overall and disease free survival time. Highly pigmented melanomas showed significantly lower level of nuclear RORs. This study shows that human melanoma development and aggressiveness is associated with decreased expression of RORα and RORγ, suggesting that RORs could be important in melanoma progression and host responses against the tumor. Furthermore, it suggests that RORα and RORγ might constitute a novel druggable target in anti-melanoma management using tumor suppressor gene therapy restoring their normal functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325362PMC
http://dx.doi.org/10.18632/oncotarget.11211DOI Listing

Publication Analysis

Top Keywords

rorα rorγ
24
melanoma progression
16
rorγ expression
8
human melanoma
8
rors melanoma
8
primary melanomas
8
expression rorα
8
melanoma
7
rorα
6
rorγ
6

Similar Publications

Rora Regulates Neutrophil Migration and Activation in Zebrafish.

Front Immunol

May 2022

Department of Biological Sciences, Purdue University, West Lafayette, IN, United States.

Article Synopsis
  • Neutrophils play a crucial role in fighting pathogens, but their migration can also cause tissue damage.
  • Researchers used microRNA overexpression to identify protein-coding genes that influence neutrophil movement, finding that miR-99 reduces chemotaxis in both zebrafish and human neutrophil-like cells.
  • The study highlights that RORα, targeted by miR-99, is vital for neutrophil migration and immune defense, as inhibiting it made zebrafish more vulnerable to bacterial infections.
View Article and Find Full Text PDF

Dual Molecular Effects of Dominant RORA Mutations Cause Two Variants of Syndromic Intellectual Disability with Either Autism or Cerebellar Ataxia.

Am J Hum Genet

May 2018

Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; l'institut du thorax, INSERM, CNRS, UNIV Nantes, 44007 Nantes, France. Electronic address:

RORα, the RAR-related orphan nuclear receptor alpha, is essential for cerebellar development. The spontaneous mutant mouse staggerer, with an ataxic gait caused by neurodegeneration of cerebellar Purkinje cells, was discovered two decades ago to result from homozygous intragenic Rora deletions. However, RORA mutations were hitherto undocumented in humans.

View Article and Find Full Text PDF

Th17 master transcription factors RORα and RORγ regulate the expression of IL-17C, IL-17D and IL-17F in Cynoglossus semilaevis.

Dev Comp Immunol

February 2016

Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China. Electronic address:

The RAR-related orphan receptors (RORs) are members of the nuclear receptor family of intracellular transcription factors. In this study, we examined the regulatory properties of RORα (CsRORα) and RORγ (CsRORγ) in tongue sole (Cynoglossus semilaevis). CsRORα and CsRORγ expression was detected in major lymphoid organs and altered to significant extents after bacterial and viral infection.

View Article and Find Full Text PDF

The zebrafish period2 protein positively regulates the circadian clock through mediation of retinoic acid receptor (RAR)-related orphan receptor α (Rorα).

J Biol Chem

February 2015

From the Center for Circadian Clocks and School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China

We report the characterization of a null mutant for zebrafish circadian clock gene period2 (per2) generated by transcription activator-like effector nuclease and a positive role of PER2 in vertebrate circadian regulation. Locomotor experiments showed that per2 mutant zebrafish display reduced activities under light-dark and 2-h phase delay under constant darkness, and quantitative real time PCR analyses showed up-regulation of cry1aa, cry1ba, cry1bb, and aanat2 but down-regulation of per1b, per3, and bmal1b in per2 mutant zebrafish, suggesting that Per2 is essential for the zebrafish circadian clock. Luciferase reporter assays demonstrated that Per2 represses aanat2 expression through E-box and enhances bmal1b expression through the Ror/Rev-erb response element, implicating that Per2 plays dual roles in the zebrafish circadian clock.

View Article and Find Full Text PDF

Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish.

Am J Physiol Regul Integr Comp Physiol

January 2012

Scottish Oceans Institute, School of Biology, University of St. Andrews, Fife, Scotland, United Kingdom.

To identify circadian patterns of gene expression in skeletal muscle, adult male zebrafish were acclimated for 2 wk to a 12:12-h light-dark photoperiod and then exposed to continuous darkness for 86 h with ad libitum feeding. The increase in gut food content associated with the subjective light period was much diminished by the third cycle, enabling feeding and circadian rhythms to be distinguished. Expression of zebrafish paralogs of mammalian transcriptional activators of the circadian mechanism (bmal1, clock1, and rora) followed a rhythmic pattern with a ∼24-h periodicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!