Deep neural network-based methods have recently achieved excellent performance in visual tracking task. As very few training samples are available in visual tracking task, those approaches rely heavily on extremely large auxiliary dataset such as ImageNet to pretrain the model. In order to address the discrepancy between the source domain (the auxiliary data) and the target domain (the object being tracked), they need to be finetuned during the tracking process. However, those methods suffer from sensitivity to the hyper-parameters such as learning rate, maximum number of epochs, size of mini-batch, and so on. Thus, it is worthy to investigate whether pretraining and fine tuning through conventional back-prop is essential for visual tracking. In this paper, we shed light on this line of research by proposing convolutional random vector functional link (CRVFL) neural network, which can be regarded as a marriage of the convolutional neural network and random vector functional link network, to simplify the visual tracking system. The parameters in the convolutional layer are randomly initialized and kept fixed. Only the parameters in the fully connected layer need to be learned. We further propose an elegant approach to update the tracker. In the widely used visual tracking benchmark, without any auxiliary data, a single CRVFL model achieves 79.0% with a threshold of 20 pixels for the precision plot. Moreover, an ensemble of CRVFL yields comparatively the best result of 86.3%.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2016.2588526DOI Listing

Publication Analysis

Top Keywords

visual tracking
24
random vector
12
vector functional
12
functional link
12
convolutional random
8
link network
8
tracking task
8
auxiliary data
8
neural network
8
visual
6

Similar Publications

Background: Perception-related errors comprise most diagnostic mistakes in radiology. To mitigate this problem, radiologists use personalized and high-dimensional visual search strategies, otherwise known as search patterns. Qualitative descriptions of these search patterns, which involve the physician verbalizing or annotating the order he or she analyzes the image, can be unreliable due to discrepancies in what is reported versus the actual visual patterns.

View Article and Find Full Text PDF

Examining Concurrent Associations Between Gesture Use, Developmental Domains, and Autistic Traits in Toddlers With Down Syndrome.

J Speech Lang Hear Res

January 2025

Down Syndrome Program, Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, MA.

Purpose: Toddlers with Down syndrome (DS) showcase comparable or higher rates of gestures than chronological age- and language-matched toddlers without DS. Little is known about how gesture use in toddlers with DS relates to multiple domains of development, including motor, pragmatics, language, and visual reception (VR) skills. Unexplored is whether gesture use is a good marker of social communication skills in DS or if gesture development might be more reliably a marker of motor, language, pragmatics, or VR skills.

View Article and Find Full Text PDF

Background: The increasing prevalence and burden of chronic obstructive pulmonary disorder (COPD), the challenges in implementing pulmonary rehabilitation (PR) programs and the limited availability of alternatives and supportive programs to serve patients with COPD necessitate the development of pulmonary telerehabilitation (PTR) systems to provide patients with COPD with PR programs.

Objective: This study aimed to design and develop the ChestCare mobile Health app using user-centred design (UCD) approach. Thus, it provided PTR for patients with COPD, enhancing their self-management of symptoms and improving their compliance with PR programs.

View Article and Find Full Text PDF

Ultrasensitive Xe Magnetic Resonance Imaging: From Clinical Monitoring to Molecular Sensing.

Adv Sci (Weinh)

January 2025

Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China.

Magnetic resonance imaging (MRI) is a cornerstone technology in clinical diagnostics and in vivo research, offering unparalleled visualization capabilities. Despite significant advancements in the past century, traditional H MRI still faces sensitivity limitations that hinder its further development. To overcome this challenge, hyperpolarization methods have been introduced, disrupting the thermal equilibrium of nuclear spins and leading to an increased proportion of hyperpolarized spins, thereby enhancing sensitivity by hundreds to tens of thousands of times.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop ground-truth histology about contributors to variable fundus autofluorescence (FAF) signal and thus inform patient selection for treating geographic atrophy (GA) in age-related macular degeneration (AMD).

Methods: One woman with bilateral multifocal GA, foveal sparing, and thick choroids underwent 535 to 580 nm excitation FAF in 6 clinic visits (11 to 6 years before death). The left eye was preserved 5 hours after death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!