AI Article Synopsis

  • Researchers explored the role of tissue factor (TF) and forkhead box transcription factor O-1 (FoxO1) in chronic thromboembolic pulmonary hypertension (CTEPH) using a rat model.
  • They induced CTEPH by repeatedly injecting autologous blood clots into the rats' pulmonary arteries and found significant increases in mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance compared to a control sham group.
  • The study revealed that TF expression was significantly higher while FoxO1 expression was lower in the CTEPH group, indicating their potential involvement in vascular remodeling during the disease.

Article Abstract

Few reports have examined tissue factor (TF) and forkhead box transcription factor O-1 (FoxO1) expression in chronic thromboembolic pulmonary hypertension (CTEPH) animal models. To investigate the role of TF and FoxO1 and their interactions during CTEPH pathogenesis in a rat model. Autologous blood clots were repeatedly injected into the pulmonary arteries through right jugular vein to induce a rat model of CTEPH. Hemodynamic parameters, histopathology, and TF and FoxO1expression levels were detected. The mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance and vessel wall area/total area (WA/TA) ratio in the experiment group increased significantly than sham group (P < 0.05). The cardiac output in the 1-, 2-, and 4-week groups decreased significantly (P < 0.05) when compared to sham group. TF mRNA expression levels in the experiment group increased significantly than sham group (P < 0.05). FoxO1 mRNA and protein expression levels were lower in the experiment group than sham group (P < 0.05). The mPAP had a positive correlation with WA/TA ratio (r = 0.45, P = 0.01). TF mRNA expression had a positive correlation with WA/TA ratio (r = 0.374, P = 0.035) and a positive correlation with mPAP (r = 0.48, P= 0.005). FoxO1 mRNA expression had a negative correlation trend with the WA/TA ratio (r = -0.297, P = 0.099) and a negative correlation trend with mPAP (r = -0.34, P = 0.057). TF mRNA expression had a negative correlation with FoxO1 mRNA expression (r = -0.62, P < 0.001). A rat model of CTEPH can be successfully established by the injection of autologous blood clots into the pulmonary artery. TF and FoxO1 may play a key role in vascular remodeling during CTEPH pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11239-016-1413-9DOI Listing

Publication Analysis

Top Keywords

rat model
12
tissue factor
8
factor forkhead
8
forkhead box
8
box transcription
8
transcription factor
8
factor o-1
8
chronic thromboembolic
8
thromboembolic pulmonary
8
pulmonary hypertension
8

Similar Publications

Backgrounds: Osteoarthritis (OA) significantly impacts the elderly, leading to disability and decreased quality of life. While hyaluronic acid (HA) and chondroitin sulfate (CS) are recognized for their therapeutic potential in OA, their effects on extracellular matrix (ECM) degradation are not well understood. This study investigates the impact of HA and CS, individually and combined, on ECM degradation in OA and the underlying mechanisms.

View Article and Find Full Text PDF

Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.

View Article and Find Full Text PDF

Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.

View Article and Find Full Text PDF

Hyperoxia-activated Nrf2 regulates ferroptosis in intestinal epithelial cells and intervenes in inflammatory reaction through COX-2/PGE2/EP2 pathway.

Mol Med

January 2025

Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, ShengJing Hospital of China Medical University, SanHao Street No. 36, HePing District, Shenyang, 110000, Liaoning, China.

The lack of knowledge about the mechanism of hyperoxia-induced intestinal injury has attracted considerable attention, due to the potential for this condition to cause neonatal complications. This study aimed to explore the relationship between hyperoxia-induced oxidative damage and ferroptosis in intestinal tissue and investigate the mechanism by which hyperoxia regulates inflammation through ferroptosis. The study systematically evaluated the effects of hyperoxia on oxidative stress, mitochondrial damage, ferroptosis, and inflammation of intestinal epithelial cells both in vitro and in vivo.

View Article and Find Full Text PDF

SNX3 mediates heart failure by interacting with HMGB1 and subsequently facilitating its nuclear-cytoplasmic translocation.

Acta Pharmacol Sin

January 2025

National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!