Anatomically-aided PET reconstruction using the kernel method.

Phys Med Biol

Department of Biomedical Engineering, University of California-Davis, Davis, CA, USA.

Published: September 2016

This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095621PMC
http://dx.doi.org/10.1088/0031-9155/61/18/6668DOI Listing

Publication Analysis

Top Keywords

kernel method
24
pet reconstruction
12
method
10
anatomically-aided pet
8
incorporate anatomical
8
bowsher method
8
data set
8
kernel
6
reconstruction
4
reconstruction kernel
4

Similar Publications

Characterization of Hazelnut Trees in Open Field Through High-Resolution UAV-Based Imagery and Vegetation Indices.

Sensors (Basel)

January 2025

Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.

The increasing demand for hazelnut kernels is favoring an upsurge in hazelnut cultivation worldwide, but ongoing climate change threatens this crop, affecting yield decreases and subject to uncontrolled pathogen and parasite attacks. Technical advances in precision agriculture are expected to support farmers to more efficiently control the physio-pathological status of crops. Here, we report a straightforward approach to monitoring hazelnut trees in an open field, using aerial multispectral pictures taken by drones.

View Article and Find Full Text PDF

Human activity recognition by radar sensors plays an important role in healthcare and smart homes. However, labeling a large number of radar datasets is difficult and time-consuming, and it is difficult for models trained on insufficient labeled data to obtain exact classification results. In this paper, we propose a multiscale residual weighted classification network with large-scale, medium-scale, and small-scale residual networks.

View Article and Find Full Text PDF

Palm and palm kernel oils are preferred ingredients in industrial food processing for baked goods and chocolate-based desserts due to their unique properties, such as their distinctive melting behaviors. However, ongoing concerns about the social and environmental sustainability of palm oil production, coupled with consumer demands for palm oil-free products, have prompted the industry to seek alternatives which avoid the use of other tropical or hydrogenated fats. This project investigated replacing palm oils with chemically unhardened Swiss sunflower or rapeseed oils.

View Article and Find Full Text PDF

Radiation Damage Mitigation in FeCrAl Alloy at Sub-Recrystallization Temperatures.

Materials (Basel)

December 2024

Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16803, USA.

Traditional defect recovery methods rely on high-temperature annealing, often exceeding 750 °C for FeCrAl. In this study, we introduce electron wind force (EWF)-assisted annealing as an alternative approach to mitigate irradiation-induced defects at significantly lower temperatures. FeCrAl samples irradiated with 5 MeV Zr ions at a dose of 10 cm were annealed using EWF at 250 °C for 60 s.

View Article and Find Full Text PDF
Article Synopsis
  • Coal-based humic acid residue (HAS) has potential as a nutrient-rich material for adsorbing harmful substances like mercury (Hg), and a modified version (N-HAS) was created to enhance its adsorption properties.
  • N-HAS demonstrated a strong capacity for Hg removal, with a maximum adsorption of 124.20 mg/g and stable performance over multiple cycles, effectively lowering Hg levels in both maize and contaminated soil.
  • The study highlighted that using N-HAS led to significant reductions in Hg content in maize kernels (up to 72.09%) and soil (up to 82.80%), with optimal results observed at an application rate of 0.4 kg/m.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!