A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vibrational Stark Effects of Carbonyl Probes Applied to Reinterpret IR and Raman Data for Enzyme Inhibitors in Terms of Electric Fields at the Active Site. | LitMetric

IR and Raman frequency shifts have been reported for numerous probes of enzyme transition states, leading to diverse interpretations. In the case of the model enzyme ketosteroid isomerase (KSI), we have argued that IR spectral shifts for a carbonyl probe at the active site can provide a connection between the active site electric field and the activation free energy (Fried et al. Science 2014, 346, 1510-1514). Here we generalize this approach to a much broader set of carbonyl probes (e.g., oxoesters, thioesters, and amides), first establishing the sensitivity of each probe to an electric field using vibrational Stark spectroscopy, vibrational solvatochromism, and MD simulations, and then applying these results to reinterpret data already in the literature for enzymes such as 4-chlorobenzoyl-CoA dehalogenase and serine proteases. These results demonstrate that the vibrational Stark effect provides a general framework for estimating the electrostatic contribution to the catalytic rate and may provide a metric for the design or modification of enzymes. Opportunities and limitations of the approach are also described.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5077301PMC
http://dx.doi.org/10.1021/acs.jpcb.6b08133DOI Listing

Publication Analysis

Top Keywords

vibrational stark
12
active site
12
carbonyl probes
8
electric field
8
vibrational
4
stark effects
4
effects carbonyl
4
probes applied
4
applied reinterpret
4
reinterpret raman
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!