The capacity to quickly and accurately simulate extracellular stimulation of neurons is essential to the design of next-generation neural prostheses. Existing platforms for simulating neurons are largely based on finite-difference techniques; due to the complex geometries involved, the more powerful spectral or differential quadrature techniques cannot be applied directly. This paper presents a mathematical basis for the application of a spectral element method to the problem of simulating the extracellular stimulation of retinal neurons, which is readily extensible to neural fibers of any kind. The activating function formalism is extended to arbitrary neuron geometries, and a segmentation method to guarantee an appropriate choice of collocation points is presented. Differential quadrature may then be applied to efficiently solve the resulting cable equations. The capacity for this model to simulate action potentials propagating through branching structures and to predict minimum extracellular stimulation thresholds for individual neurons is demonstrated. The presented model is validated against published values for extracellular stimulation threshold and conduction velocity for realistic physiological parameter values. This model suggests that convoluted axon geometries are more readily activated by extracellular stimulation than linear axon geometries, which may have ramifications for the design of neural prostheses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-016-1558-xDOI Listing

Publication Analysis

Top Keywords

extracellular stimulation
20
spectral element
8
element method
8
simulating extracellular
8
stimulation neurons
8
neural prostheses
8
differential quadrature
8
axon geometries
8
extracellular
6
stimulation
6

Similar Publications

Biomimetic Extracellular Vesicles Containing Biominerals for Targeted Osteoporosis Therapy.

ACS Appl Mater Interfaces

January 2025

Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.

Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.

View Article and Find Full Text PDF

The sensation of sng (pronounced/səŋ/, the Romanization form of or soreness in Taiwanese Southern Min) associated with a composite of unique sensations, is a novel phenotype for acupoint stimulation. It is perceived by test participants but also by experienced practitioners as a sensation of "taking the bait" (by fish when fishing), a characteristic heavy and tight sensation from the needle. Here, we propose that sng is a powerful biomarker for associated with successful manual acupuncture.

View Article and Find Full Text PDF

Thermoplastic polymers provide a versatile platform to mimic various aspects of physiological extracellular matrix properties such as chemical composition, stiffness, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of the most promising thermoplastic polymers, and in particular the thermoplastic polyesters, such as poly(lactic acid), poly(glycolic acid), and polycaprolactone, and the thermoplastic elastomers, such as polyurethanes, polyhydroxyalkanoates, and poly(butyl cyanoacrylate). A particular focus has been made on the synthesis processes, the processability and the biocompatibility.

View Article and Find Full Text PDF

Cardiorenal syndrome (CRS) is represented as an intricate dysfunctional interplay between the heart and kidneys, marked by cardiorenal inflammation and fibrosis. Unlike other organs, the repair process in cardiorenal injury involves a regenerative phase characterized by proliferation and polyploidization, followed by a subsequent pathogenic phase of fibrosis. In CRS, acute or chronic cardiorenal injury leads to hyperactive inflammation and fibrotic remodeling, associated with injury-mediated immune cell (Macrophages, Monocytes, and T-cells) infiltration and myofibroblast activation.

View Article and Find Full Text PDF

4-O-Methylglucuronoxylan from Hygrophila Ringens var. Ringens Seeds: Chemical Composition and Anti-Inflammatory Activity.

Macromol Biosci

January 2025

Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743, Jena, Germany.

Hygrophila ringens var. ringens is a medicinal plant of the Acanthaceae family. A soluble polysaccharide is extracted from H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!