Wild type transthyretin (TTR) and mutant TTR misfold and misassemble into a variety of extracellular insoluble amyloid fibril and/or amorphous aggregate, which are associated with a variety of human amyloid diseases. To develop potent TTR amyloidogenesis inhibitors, we have designed and synthesized a focused library of quinoline derivatives by Pd-catalyzed coupling reaction and by the Horner-Wadsworth-Emmons reaction. The resulting 2-alkynylquinoline derivatives, (E)-2-alkenylquinoline derivatives, and (E)-3-alkenylquinoline derivatives were evaluated to inhibit TTR amyloidogenesis by utilizing the acid-mediated TTR fibril formation. Among these quinoline derivatives, compound 14c exhibited the most potent anti-TTR fibril formation activity in the screening studies, with IC50 values of 1.49 μM against WT-TTR and 1.63 μM against more amyloidogenic V30 M TTR mutant. That is comparable to that of approved therapeutic drug, tafamidis, to ameliorate transthyretin-related amyloidosis. Furthermore, rationalization of the increased efficacy of compound 14c bearing a hydrophobic substituent, such as chloride, was carried out by utilizing in silico docking study that could focus on the region of the thyroid hormone thyroxine (T4) binding sites. Additionally, the most potent compound 14c exhibited good pharmacokinetics properties. Taken together, the novel quinoline derivatives could potentially be explored as potential drug candidates to treat the human TTR amyloidosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2016.08.003 | DOI Listing |
J Environ Manage
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:
Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.
View Article and Find Full Text PDFSci Rep
January 2025
Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P. O. Box 33, Nizwa, Oman.
Diabetes mellitus, particularly type 2 diabetes, is a growing global health challenge characterized by chronic hyperglycemia due to insulin resistance. One therapeutic approach to managing this condition is the inhibition of α-glucosidase, an enzyme involved in carbohydrate digestion, to reduce postprandial blood glucose levels. In this study, a series of thiosemicarbazide-linked quinoline-piperazine derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity, to identify new agents for type 2 diabetes management.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
Remdesivir and moxifloxacin hydrochloride are among the most frequently co-administered drugs used for COVID-19 treatment. The current work aims to evaluate green spectrophotometric methodologies for estimating remdesivir and moxifloxacin hydrochloride in different matrices for the first time. The proposed approaches were absorbance subtraction, extended ratio subtraction and amplitude modulation methods.
View Article and Find Full Text PDFBioorg Med Chem
January 2025
Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. Electronic address:
Infectious diseases caused by drug-resistant bacteria represent one of the most significant global public challenges of this century. There is an urgent need for the treatment of drug-resistant Gram-negative bacterial infections. A series of 3,4-dihydro-2H-[1,3]oxazino[5,6-h]quinoline derivatives were synthesized and evaluated for their antibacterial activity against Gram-negative bacteria including strains from ATCC and clinical isolates, initially revealing the structure-activity relationship.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
Inflammatory skin diseases comprise a group of skin conditions characterized by damage to skin function due to overactive immune responses. These disorders not only impair the barrier function of the skin but also deteriorate the quality of life and increase the risk of psychiatric issues. Here, a low-modulus phosphatidylserine-exposing microvesicle (deformed PSV, D-PSV) was produced, characterized, and evaluated for its potential therapeutic function against skin diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!