Over the last few decades, the natural flow regime of most rivers has been significantly altered influencing the ecological integrity and functioning of river ecosystems. Especially in the Mediterranean region, irrigated agriculture is considered one of the most important drivers of hydro-morphological modifications in river systems. In this study we employ the Indicators of Hydrologic Alteration (IHA) methodology for the Pinios River and its tributaries, located in a Mediterranean catchment in central Greece, with the purpose to assess the natural flow regime under a simulated no-agriculture scenario and compare with the current situation. The work is based on the use of the SWAT (Soil Water Assessment Tool) model for the simulation of long time series of daily stream flows, which were analyzed under the actual conditions (baseline), and the hypothetical scenario. The key characteristics of the flow regime projected under each model run were assessed through the implementation of the IHA methodology that utilizes a number of indicators to characterize the intra- and inter-annual variability in the hydrologic conditions. The results of this study revealed that without agricultural activities in the catchment, annual and monthly flows would increase, with significant alterations in the flow characteristics of the winter months, and much smaller in summer. However, the analysis showed that the frequency of droughts and low flow summer events would be smaller. The article provides a comprehensive and easy-to-implement methodology that can facilitate the impact assessment of agricultural human activities on river flow variability under the typical Mediterranean conditions, allowing experimentation on setting river flow thresholds required for a good ecological status within the context of the European Water Framework Directive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2016.08.046 | DOI Listing |
Anal Chem
January 2025
Chemistry Department, Indiana University, Bloomington, Indiana 47405, United States.
Charge detection mass spectrometry (CD-MS) is an emerging single-particle technique where both the / and charge are measured individually to determine each ion's mass. It is particularly well-suited for analyzing high mass and heterogeneous samples. With conventional MS, the loss of charge state resolution with high mass samples has hindered the direct coupling of MS to separation techniques like size exclusion chromatography (SEC) and forced the use of lower resolution detectors.
View Article and Find Full Text PDFJ Transl Int Med
February 2024
Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
Background And Objective: Hemodynamic changes that lead to increased blood pressure represent the main drivers of organ damage in hypertension. Prolonged increases to blood pressure can lead to vascular remodeling, which also affects vascular hemodynamics during the pathogenesis of hypertension. Exercise is beneficial for relieving hypertension, however the mechanistic link between exercise training and how it influences hemodynamics in the context of hypertension is not well understood.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC 29528, USA.
Nondimensional groups of measured quantities enable comparison between measurements of animals under different conditions and comparison between species. One of the most used such group is the Reynolds number, which compares inertial and viscous contributions to forces on swimming animals. This group includes two quantities that are chosen by the researcher: a typical length and speed.
View Article and Find Full Text PDFMolecules
January 2025
Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Chungcheongnam-do, Republic of Korea.
The continuous synthesis of nanoparticles (NPs) has been actively studied due to its great potential to produce NPs with reproducible and controllable physicochemical properties. Here, we achieved the high throughput production of nanostructured lipid carriers (NLCs) using a coaxial turbulent jet mixer with an added heating system. This device, designed for the crossflow of precursor solution and non-solvent, combined with the heating system, efficiently dissolves solid lipids and surfactants.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Mechatronics Engineering Department, Yildiz Technical University, Istanbul 34349, Turkey.
The efficient mixing of fluids at microscale dimensions presents challenges due to the dominant laminar flow regime which restricts convective mixing. This study introduces a numerical analysis of a novel microrobotic mixing system with a levitated propeller robot, driven by magnetic fields, within a Y-shaped microchannel with a square cross-section (500 × 500 μm). Our research investigates the fluid mixing effectiveness facilitated by the microrobot through various levitation heights and orientations to enhance the mixing index (MI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!