Adsorption of arsenic from water and its recovery as a highly active photocatalyst.

Environ Sci Pollut Res Int

Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG, 39803-371, Brazil.

Published: November 2016

The contamination of water with arsenic has aroused concern around the world due to its toxic effects. Thus, the development of low-cost technologies for treating water contaminated with toxic metals is highly advisable. Adsorption is an attractive technology for purification of contaminated water, but it only transfers the contaminant from water to the solid adsorbent, which provokes another problem related to solid residue disposal. In this work, we developed a sustainable method for purifying water contaminated with arsenic by using δ-FeOOH nanoparticles. The adsorption capacities of nanomaterial for As and As species were 40 and 41 mg g, respectively, and were highly efficient to purify arsenic-contaminated water from a Brazilian river. The concentration of arsenic in water was close to zero after the water treatment by δ-FeOOH. Once the arsenic is adsorbed, it can be recovered by treatment with NaOH solutions. Approximately 85 % of the total adsorbed arsenic could be recovered and used as a precursor to produce useful material (AgAsO) with excellent photocatalytic activity. It was active under visible light and had a high recyclability for oxidation of rhodamine B. Finally, the simple method described is promising to design sustainable process of environmental remediation with minimum residue generation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-016-7441-3DOI Listing

Publication Analysis

Top Keywords

water
9
arsenic water
8
water contaminated
8
arsenic
5
adsorption arsenic
4
water recovery
4
recovery highly
4
highly active
4
active photocatalyst
4
photocatalyst contamination
4

Similar Publications

Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.

ACS Chem Neurosci

January 2025

Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.

Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.

View Article and Find Full Text PDF

Addressing Water Scarcity to Achieve Climate Resilience and Human Health.

Integr Environ Assess Manag

January 2025

Department of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco; San Francisco, California, 94158United States.

Water scarcity is projected to affect half of the world's population, gradually exacerbated by climate change. This article elaborates from a panel discussion at the 2023 United Nations Water Conference on Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Understanding and addressing water scarcity goes beyond hydrological water balances to also include societal and economic measures.

View Article and Find Full Text PDF

Long-term climate history can influence rates of soil carbon cycling but the microbial traits underlying these legacy effects are not well understood. Legacies may result if historical climate differences alter the traits of soil microbial communities, particularly those associated with carbon cycling and stress tolerance. However, it is also possible that contemporary conditions can overcome the influence of historical climate, particularly under extreme conditions.

View Article and Find Full Text PDF

Importance: There is a lack of long-term efficacy and safety data on hereditary transthyretin amyloidosis with polyneuropathy (hATTR-PN) and on RNA interference (RNAi) therapeutics in general. This study presents the longest-term data to date on patisiran for hATTR-PN.

Objective: To present the long-term efficacy and safety of patisiran in adults with hATTR-PN.

View Article and Find Full Text PDF

Fluid Distribution: Response to Intermittent Pneumatic Compression in People With and Without Primary Lymphedema.

Lymphat Res Biol

January 2025

Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Bedford Park, Australia.

Current understanding of changes in fluid distribution in response to the application of compression in primary lymphedema (PLE) is limited. This study measured fluid distribution before and after one application of standardized intermittent pneumatic compression (IPC) in the lower limbs of people with PLE, compared with those without lymphedema. High-frequency ultrasound (HFU) was used to measure dermal fluid, bioimpedance to measure segmental fluid, and percent water content (PWC) to measure fluid at specific anatomical points.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!