The mosquito-borne dengue virus serotypes 1-4 (DENV1-4) and West Nile virus (WNV) cause serious illnesses worldwide associated with considerable morbidity and mortality. According to the World Health Organization (WHO) estimates, there are about 390 million infections every year leading to ∼500,000 dengue haemorrhagic fever (DHF) cases and ∼25,000 deaths, mostly among children. Antiviral therapies could reduce the morbidity and mortality associated with flaviviral infections, but currently there are no drugs available for treatment. In this study, a high-throughput screening assay for the Dengue protease was employed to screen ∼120,000 small molecule compounds for identification of inhibitors. Eight of these inhibitors have been extensively analyzed for inhibition of the viral protease in vitro and cell-based viral replication using Renilla luciferase reporter replicon, infectivity (plaque) and cytotoxicity assays. Three of these compounds were identified as potent inhibitors of DENV and WNV proteases, and viral replication of DENV2 replicon and infectious RNA. Fluorescence quenching, kinetic analysis and molecular modeling of these inhibitors into the structure of NS2B-NS3 protease suggest a mode of inhibition for three compounds that they bind to the substrate binding pocket.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5065773PMC
http://dx.doi.org/10.1016/j.antiviral.2016.08.014DOI Listing

Publication Analysis

Top Keywords

high-throughput screening
8
morbidity mortality
8
viral replication
8
three compounds
8
inhibitors
5
screening identification
4
identification small-molecule
4
small-molecule inhibitors
4
inhibitors flaviviral
4
protease
4

Similar Publications

En masse evaluation of RNA guides (EMERGe) for ADARs.

Methods Enzymol

January 2025

Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA, United States. Electronic address:

Adenosine Deaminases Acting on RNA (ADARs) convert adenosine to inosine in duplex RNA, and through the delivery of guide RNAs, can be directed to edit specific adenosine sites. As ADARs are endogenously expressed in humans, their editing capacities hold therapeutic potential and allow us to target disease-relevant sequences in RNA through the rationale design of guide RNAs. However, current design principles are not suitable for difficult-to-edit target sites, posing challenges to unlocking the full therapeutic potential of this approach.

View Article and Find Full Text PDF

Saccharomyces cerevisiae, a model eukaryotic organism with a rich history in research and industry, has become a pivotal tool for studying Adenosine Deaminase Acting on RNA (ADAR) enzymes despite lacking these enzymes endogenously. This chapter reviews the diverse methodologies harnessed using yeast to elucidate ADAR structure and function, emphasizing its role in advancing our understanding of RNA editing. Initially, Saccharomyces cerevisiae was instrumental in the high-yield purification of ADARs, addressing challenges associated with enzyme stability and activity in other systems.

View Article and Find Full Text PDF

The variability in translational models profoundly impacts the outcomes and predictive value of preclinical studies for gastrointestinal (GI) cancer treatments. Preclinical models, including 2D cell cultures, 3D organoids, patient-derived xenografts (PDXs), and animal models, provide distinct advantages and limitations in replicating the complex tumor microenvironment (TME) of human cancers. Each model's unique biological and structural differences contribute to discrepancies in treatment responses, challenging the direct translation of experimental results to clinical settings.

View Article and Find Full Text PDF

T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.

View Article and Find Full Text PDF

A Fast-Pass, Desorption Electrospray Ionization Mass Spectrometry Strategy for Untargeted Metabolic Phenotyping.

J Am Soc Mass Spectrom

January 2025

Department of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States.

Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) provides direct analytical readouts of small molecules that can be used to characterize the metabolic phenotypes of genetically engineered bacteria. In an effort to accelerate the time frame associated with the screening of mutant libraries, we have developed a high-throughput DESI-MSI analytical workflow implementing a single raster line-scan strategy that facilitates the collection of location-resolved molecular information from engineered strains on a subminute time scale. Evaluation of this "Fast-Pass" DESI-MSI phenotyping workflow on analytical standards demonstrated the capability of acquiring full metabolic profiling information with a throughput of ∼40 s per sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!