A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Implementing personalized medicine with asymmetric information on prevalence rates. | LitMetric

Although personalized medicine is becoming the new paradigm to manage some diseases, the economics of personalized medicine have only focused on assessing the efficiency of specific treatments, lacking a theoretical framework analyzing the interactions between pharmaceutical firms and healthcare systems leading to the implementation of personalized treatments. We model the interaction between the hospitals and the manufacturer of a new treatment as an adverse selection problem where the firm does not have perfect information on the prevalence across hospitals of the genetic characteristics of the patients making them eligible to receive a new treatment. As a result of the model, hospitals with high prevalence rates benefit from the information asymmetry only when the standard treatment is inefficient when applied to the patients eligible to receive the new treatment. Otherwise, information asymmetry has no value. Personalized medicine may be fully or partially implemented depending on the proportion of high prevalence hospitals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990530PMC
http://dx.doi.org/10.1186/s13561-016-0113-7DOI Listing

Publication Analysis

Top Keywords

personalized medicine
16
prevalence rates
8
prevalence hospitals
8
eligible receive
8
receive treatment
8
high prevalence
8
implementing personalized
4
medicine
4
medicine asymmetric
4
prevalence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!