Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: The goal of this study was to develop a practical framework for recognizing and disambiguating clinical abbreviations, thereby improving current clinical natural language processing (NLP) systems' capability to handle abbreviations in clinical narratives.
Methods: We developed an open-source framework for clinical abbreviation recognition and disambiguation (CARD) that leverages our previously developed methods, including: (1) machine learning based approaches to recognize abbreviations from a clinical corpus, (2) clustering-based semiautomated methods to generate possible senses of abbreviations, and (3) profile-based word sense disambiguation methods for clinical abbreviations. We applied CARD to clinical corpora from Vanderbilt University Medical Center (VUMC) and generated 2 comprehensive sense inventories for abbreviations in discharge summaries and clinic visit notes. Furthermore, we developed a wrapper that integrates CARD with MetaMap, a widely used general clinical NLP system.
Results And Conclusion: CARD detected 27 317 and 107 303 distinct abbreviations from discharge summaries and clinic visit notes, respectively. Two sense inventories were constructed for the 1000 most frequent abbreviations in these 2 corpora. Using the sense inventories created from discharge summaries, CARD achieved an F1 score of 0.755 for identifying and disambiguating all abbreviations in a corpus from the VUMC discharge summaries, which is superior to MetaMap and Apache's clinical Text Analysis Knowledge Extraction System (cTAKES). Using additional external corpora, we also demonstrated that the MetaMap-CARD wrapper improved MetaMap's performance in recognizing disorder entities in clinical notes. The CARD framework, 2 sense inventories, and the wrapper for MetaMap are publicly available at https://sbmi.uth.edu/ccb/resources/abbreviation.htm . We believe the CARD framework can be a valuable resource for improving abbreviation identification in clinical NLP systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7651947 | PMC |
http://dx.doi.org/10.1093/jamia/ocw109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!