The suboccipital muscles are connected to the upper cervical spinal dura mater via the myodural bridges (MDBs). Recently, it was suggested that they might work as a pump to provide power for cerebrospinal fluid (CSF) circulation. The purpose of this study was to investigate effects of the suboccipital muscles contractions on the CSF flow. Forty healthy adult volunteers were subjected to cine phase-contrast MR imaging. Each volunteer was scanned twice, once before and once after one-minute-head-rotation period. CSF flow waveform parameters at craniocervical junction were analyzed. The results showed that, after the head rotations, the maximum and average CSF flow rates during ventricular diastole were significantly increased, and the CSF stroke volumes during diastole and during entire cardiac cycle were significantly increased. This suggested that the CSF flow was significantly promoted by head movements. Among the muscles related with head movements, only three suboccipital muscles are connected to the upper cervical spinal dura mater via MDBs. It was believed that MDBs might transform powers of the muscles to CSF. The present results suggested that the head movements served as an important contributor to CSF dynamics and the MDBs might be involved in this mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990938PMC
http://dx.doi.org/10.1038/srep31787DOI Listing

Publication Analysis

Top Keywords

csf flow
16
suboccipital muscles
12
head movements
12
cerebrospinal fluid
8
muscles connected
8
connected upper
8
upper cervical
8
cervical spinal
8
spinal dura
8
dura mater
8

Similar Publications

Background: The pressure gradient between the ventricles and the subarachnoid space (transmantle pressure) is crucial for understanding CSF circulation and the pathogenesis of certain neurodegenerative diseases. This pressure can be approximated by the pressure difference across the aqueduct (ΔP). Currently, no dedicated platform exists for quantifying ΔP, and no research has been conducted on the impact of breathing on ΔP.

View Article and Find Full Text PDF

Cardiorespiratory signals have long been treated as "noise" in functional magnetic resonance imaging (fMRI) research, with the goal of minimizing their impact to isolate neural activity. However, there is a growing recognition that these signals, once seen as confounding variables, provide valuable insights into brain function and overall health. This shift reflects the dynamic interaction between the cardiovascular, respiratory, and neural systems, which together support brain activity.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Radiology, miami, FL, USA.

Background: Clearance of brain toxins occurs during sleep, although the mechanism remains unknown. Previous studies implied that the intracranial aqueductal cerebrospinal fluid (CSF) oscillations are involved, but no mechanism was suggested. The rationale for focusing on the aqueductal CSF oscillations is unclear.

View Article and Find Full Text PDF

While the latest WHO classification of hematological neoplasms helps refine the diagnostic criteria for anaplastic large cell lymphomas (ALCL), their diagnosis can still be challenging. This retrospective series of 10 ALCL cases illustrates the cytological appearance and immunological profile obtained through flow cytometry (FCM) from various sample types, including lymph node biopsies (LN), peripheral blood (PB), cerebrospinal fluid (CSF), and pleural fluid (PF). ALCL exhibits a polymorphic cytological appearance, ranging from "doughnut" cells to Hodgkin-like cells, very large cells, and small cells, with this polymorphism being particularly pronounced in ALK (-) forms.

View Article and Find Full Text PDF

Background And Purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!