It has been hypothesized that an important function of the cerebellum is predicting the state of the body during movement. Yet, the extent of cerebellar involvement in perception of limb state (i.e., proprioception, specifically limb position sense) has yet to be determined. Here, we investigated whether patients with cerebellar damage have deficits when trying to locate their hand in space (i.e., proprioceptive localization), which is highly important for everyday movements. By comparing performance during passive robot-controlled and active self-made multi-joint movements, we were able to determine that some cerebellar patients show improved precision during active movement (i.e., active benefit), comparable to controls, whereas other patients have reduced active benefit. Importantly, the differences in patient performance are not explained by patient diagnosis or clinical ratings of impairment. Furthermore, a subsequent experiment confirmed that active deficits in proprioceptive localization occur during both single-joint and multi-joint movements. As such, it is unlikely that localization deficits can be explained by the multi-joint coordination deficits occurring after cerebellar damage. Our results suggest that cerebellar damage may cause varied impairments to different elements of proprioceptive sense. It follows that proprioceptive localization should be adequately accounted for in clinical testing and rehabilitation of people with cerebellar damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609683PMC
http://dx.doi.org/10.1007/s12311-016-0819-4DOI Listing

Publication Analysis

Top Keywords

cerebellar damage
20
proprioceptive localization
16
localization deficits
8
people cerebellar
8
multi-joint movements
8
active benefit
8
cerebellar
7
proprioceptive
5
deficits
5
damage
5

Similar Publications

Astrocytes in aging.

Neuron

January 2025

Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. Electronic address:

The mammalian nervous system is impacted by aging. Aging alters brain architecture, is associated with molecular damage, and can manifest with cognitive and motor deficits that diminish the quality of life. Astrocytes are glial cells of the CNS that regulate the development, function, and repair of neural circuits during development and adulthood; however, their functions in aging are less understood.

View Article and Find Full Text PDF

Trimethyltin chloride (TMT), an organotin compound with potent neurotoxicity, is widely used as a heat stabilizer for plastics. However, the precise pathogenic mechanism of TMT remains incompletely elucidated, and there persists a dearth of sensitive detection methodologies for early diagnosis of TMT. In this study, Sprague-Dawley rats were treated with 10 mg/kg TMT to simulate acute exposure in humans.

View Article and Find Full Text PDF

While deficits in episodic memory have been noted following cerebellar damage, there is a lack of research systematically exploring the socio-demographic and cognitive profiles of patients with such impairments. This study aimed to differentiate between chronic-phase cerebellar stroke patients with and without verbal episodic memory deficits, and to determine whether those with deficits exhibit distinct socio-demographic and clinical profiles, thereby identifying potential factors associated with these impairments. Data from 15 cerebellar stroke patients in the CEREBEMO cohort were analyzed, with participants categorized into two groups based on verbal episodic memory performance: deficits (n = 8) and no deficits (n = 7).

View Article and Find Full Text PDF

The cGAS-STING, p38 MAPK, and p53 pathways link genome instability to accelerated cellular senescence in ATM-deficient murine lung fibroblasts.

Proc Natl Acad Sci U S A

January 2025

Department of Human Molecular Genetics and Biochemistry, Faculty of Health & Medical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Ataxia-telangiectasia (A-T) is a pleiotropic genome instability syndrome resulting from the loss of the homeostatic protein kinase ATM. The complex phenotype of A-T includes progressive cerebellar degeneration, immunodeficiency, gonadal atrophy, interstitial lung disease, cancer predisposition, endocrine abnormalities, chromosomal instability, radiosensitivity, and segmental premature aging. Cultured skin fibroblasts from A-T patients exhibit premature senescence, highlighting the association between genome instability, cellular senescence, and aging.

View Article and Find Full Text PDF
Article Synopsis
  • Minamata disease is a severe neurological disorder caused by methylmercury (MeHg) poisoning, identified in Japan in 1956, and previously thought to be linked to elevated selenium (Se) levels in patients.
  • Research showed both mercury and selenium were present in historical samples from Minamata Bay, indicating that Se also contaminated the area and accumulated in patients' organs.
  • The study's findings, including high Hg/Se molar ratios in brain tissue, help explain the neurological damage seen in patients and emphasize the dangers of consuming MeHg-contaminated seafood.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!