Unfolding of the C-Terminal Jα Helix in the LOV2 Photoreceptor Domain Observed by Time-Resolved Vibrational Spectroscopy.

J Phys Chem Lett

Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, 1081 De Boelelaan, 1081HV Amsterdam, The Netherlands.

Published: September 2016

Light-triggered reactions of biological photoreceptors have gained immense attention for their role as molecular switches in their native organisms and for optogenetic application. The light, oxygen, and voltage 2 (LOV2) sensing domain of plant phototropin binds a C-terminal Jα helix that is docked on a β-sheet and unfolds upon light absorption by the flavin mononucleotide (FMN) chromophore. In this work, the signal transduction pathway of LOV2 from Avena sativa was investigated using time-resolved infrared spectroscopy from picoseconds to microseconds. In D2O buffer, FMN singlet-to-triplet conversion occurs in 2 ns and formation of the covalent cysteinyl-FMN adduct in 10 μs. We observe a two-step unfolding of the Jα helix: The first phase occurs concomitantly with Cys-FMN covalent adduct formation in 10 μs, along with hydrogen-bond rupture of the FMN C4═O with Gln-513, motion of the β-sheet, and an additional helical element. The second phase occurs in approximately 240 μs. The final spectrum at 500 μs is essentially identical to the steady-state light-minus-dark Fourier transform infrared spectrum, indicating that Jα helix unfolding is complete on that time scale.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.6b01484DOI Listing

Publication Analysis

Top Keywords

jα helix
16
c-terminal jα
8
phase occurs
8
unfolding c-terminal
4
4
helix
4
helix lov2
4
lov2 photoreceptor
4
photoreceptor domain
4
domain observed
4

Similar Publications

Extrahelical Binding Site for a 1-Imidazo[4,5-c]quinolin-4-amine A Adenosine Receptor Positive Allosteric Modulator on Helix 8 and Distal Portions of Transmembrane Domains 1 and 7.

Mol Pharmacol

February 2024

Departments of Pharmacology & Toxicology and the Cardiovascular Center (C.L.F., T.C.W., J.A.A.) and Biochemistry and the Program in Chemical Biology (R.F.K., B.C.S.), Medical College of Wisconsin, Milwaukee, Wisconsin; Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (M.P., V.S., B.P., Z.-G.G., K.A.J.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy (V.S.)

This study describes the localization and computational prediction of a binding site for the A adenosine receptor (AAR) positive allosteric modulator 2-cyclohexyl-1-imidazo[4,5-c]quinolin-4-(3,4-dichlorophenyl)amine (LUF6000). The work reveals an extrahelical lipid-facing binding pocket disparate from the orthosteric binding site that encompasses transmembrane domain (TMD) 1, TMD7, and Helix (H) 8, which was predicted by molecular modeling and validated by mutagenesis. According to the model, the nearly planar 1-imidazo[4,5-c]quinolinamine ring system lies parallel to the transmembrane segments, inserted into an aromatic cage formed by π-π stacking interactions with the side chains of Y284 in TMD7 and Y293 in H8 and by π-NH bonding between Y284 and the exocyclic amine.

View Article and Find Full Text PDF

We sought to assess discordance of HER2 status in patients with HER2-amplified/expressing solid tumors who underwent reevaluation of HER2 status. Patients with metastatic solid tumors and HER2 expression by IHC or amplification by FISH/next-generation sequencing on local testing underwent central HER2 IHC/FISH testing with either archival or fresh biopsies and were evaluated for discordance in HER2 status. 70 patients (12 cancer types) underwent central HER2 reevaluation, including 57 (81.

View Article and Find Full Text PDF

Design of novel antimicrobial peptide dimer analogues with enhanced antimicrobial activity in vitro and in vivo by intermolecular triazole bridge strategy.

Peptides

February 2017

Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China. Electronic address:

Currently, antimicrobial peptides have attracted considerable attention because of their broad-sprectum activity and low prognostic to induce antibiotic resistance. In our study, for the first time, a series of side-chain hybrid dimer peptides J-AA (Anoplin-Anoplin), J-RR (RW-RW), and J-AR (Anoplin-RW) based on the wasp peptide Anoplin and the arginine- and tryptophan-rich hexapeptide RW were designed and synthesized by click chemistry, with the intent to improve the antimicrobial efficacy of peptides against bacterial pathogens. The results showed that all dimer analogues exhibited up to a 4-16 fold increase in antimicrobial activity compared to the parental peptides against bacterial strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!