Palmyrolide A is a neuroprotective macrolide isolated by Gerwick and coworkers in 2010. This natural product is known to suppress neuronal spontaneous calcium ion oscillations through its voltage-gated sodium channel blocking ability which is of significant interest in CNS drug discovery. Herein, we give a detailed account on total synthesis of (+)-palmyrolide A and synthesis of a focused library of macrocycles around the scaffold, followed by their biological evaluation. Use of the chiral pool approach, Zhu's oxidative homologation, access to unnatural cis-palmyrolide A, preparation of 18 new analogues and identification of macrolides with improved sodium channel blocking activity are the important features of the present paper. As a measure of potency as voltage-gated sodium channel blockers, all the synthesized analogues were profiled for their ability to inhibit the veratridine-stimulated Na(+) influx in murine primary neuronal cultures. Four macrocycles were found to be more potent or comparable to that of the natural product (-)-palmyrolide A. The most potent compound from this series 20 was structurally simplified and readily accessible in good quantities for further biological profiling.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6ob01372dDOI Listing

Publication Analysis

Top Keywords

sodium channel
16
biological evaluation
8
channel blockers
8
natural product
8
voltage-gated sodium
8
channel blocking
8
synthesis biological
4
evaluation palmyrolide
4
palmyrolide macrocycles
4
sodium
4

Similar Publications

Two-dimensional conductive metal-organic frameworks (2D c-MOFs) with high electrical conductivity and tunable structures hold significant promise for applications in metal-ion batteries. However, the construction of 3D interpenetrated c-MOFs for applications in metal-ion batteries is rarely reported. Herein, a 3D four-fold interpenetrated c-MOF (Cu-DBC) constructed by conjugated and contorted dibenzo[,]chrysene-2,3,6,7,10,11,14,15-octaol (DBC) ligands is explored as an advanced cathode material for sodium-ion batteries (SIBs) for the first time.

View Article and Find Full Text PDF

Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.

View Article and Find Full Text PDF

Super-refractory status epilepticus (SRSE) is defined as status epilepticus that persists or recurs after treatment with anesthetic agents for more than 24 hours, including cases with recurrent seizures on reduction or withdrawal of anesthetic drugs. Super-refractory status epilepticus presents a significant challenge for neurologists, particularly when standard treatments fail to achieve seizure control. Lacosamide, which has a unique mechanism involving modulating voltage-gated sodium channels by enhancing their slow inactivation, has emerged as a potential option for managing SRSE.

View Article and Find Full Text PDF

Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm.

View Article and Find Full Text PDF

Neuropeptides are inter-cellular signaling molecules occurring throughout animals. Most neuropeptides bind and activate G-protein coupled receptors, but some also activate ionotropic receptors (or "ligand-gated ion channels"). This is exemplified by the tetra-peptide H-Phe-Met-Arg-Phe-NH (FMRFa), which activates mollusc and annelid FMRFa-gated sodium channels (FaNaCs) from the trimeric degenerin/epithelial sodium channel superfamily.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!