COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity.

Front Plant Sci

Department of Plant Science, College of Agricultural Life Science, Seoul National University, Seoul South Korea.

Published: August 2016

Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1) regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier) ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN)-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971112PMC
http://dx.doi.org/10.3389/fpls.2016.01182DOI Listing

Publication Analysis

Top Keywords

cop1 atsiz1
12
cop1 controls
8
abiotic stress
8
atsiz1
8
ubiquitin ligase
8
ligase activity
8
cop1
6
controls abiotic
4
stress responses
4
responses modulating
4

Similar Publications

Nitrate reductases (NRs) catalyze the first step in the reduction of nitrate to ammonium. NR activity is regulated by sumoylation through the E3 ligase activity of AtSIZ1. However, it is not clear how NRs interact with AtSIZ1 in the cell, or how nitrogen sources affect NR levels and their cellular localization.

View Article and Find Full Text PDF

Sumoylation regulates numerous cellular functions in plants as well as in other eukaryotic systems. However, the regulatory mechanisms controlling E3 small ubiquitin-related modifier (SUMO) ligase are not well understood. Here, post-translational modification of the Arabidopsis E3 SUMO ligase AtSIZ1 was shown to be specifically controlled by abiotic stresses.

View Article and Find Full Text PDF

COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity.

Front Plant Sci

August 2016

Department of Plant Science, College of Agricultural Life Science, Seoul National University, Seoul South Korea.

Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1) regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier) ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!