Malate dehydrogenases (MDHs) are key metabolic enzymes that play important roles in plant growth and development. In the present study, we isolated the full-length and coding sequences of BraMDH from Chinese cabbage [Brassica campestris L. ssp. pekinensis (Lour) Olsson]. We conducted bioinformatics analysis and a subcellular localization assay, which revealed that the BraMDH gene sequence contained no introns and that BraMDH is localized to the chloroplast. In addition, the expression pattern of BraMDH in Chinese cabbage was investigated, which revealed that BraMDH was heavily expressed in inflorescence apical meristems, as well as the effect of BraMDH overexpression in two homozygous transgenic Arabidopsis lines, which resulted in early bolting and taller inflorescence stems. Furthermore, the fresh and dry weights of aerial tissue from the transgenic Arabidopsis plants were significantly higher than those from the corresponding wild-type plants, as were plant height, the number of rosette leaves, and the number of siliques produced, and the transgenic plants also exhibited stronger aluminum resistance when treated with AlCl3. Therefore, our results suggest that BraMDH has a dramatic effect on plant growth and that the gene is involved in both plant growth and aluminum resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971079 | PMC |
http://dx.doi.org/10.3389/fpls.2016.01180 | DOI Listing |
Arch Environ Contam Toxicol
January 2025
College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, People's Republic of China.
The investigation focused on Tl, Hg, As, and Sb as the targeted contaminants in the soil surrounding a thallium mining region in southwestern China. Potential sources of toxic elements were identified using correlation analysis and principal component analysis. By interpreting the results of correlation and principal component analysis, the potential sources of Tl, Hg, As, and Sb were identified to include the mining and smelting industry.
View Article and Find Full Text PDFSci Rep
December 2024
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China.
The photosynthetic mechanism responsible for the differences in yield between different rapeseed varieties remains unclear, and there have been no consensus and definite conclusions about the relationship between photosynthesis and yield. Representation of the whole plant by measuring the photosynthetic performance at a single site may lead to biased results. In this study, we comprehensively analyzed the main photosynthetic organs of four high-yielding rapeseed varieties at the seedling, bud, flowering, and podding stages.
View Article and Find Full Text PDFGels
December 2024
College of Resources and Environment Sciences, Gansu Agricultural University, Lanzhou 730070, China.
Under the increasing severity of drought issues and the urgent need for the resourceful utilization of agricultural waste, this study aimed to compare the soil water retention properties of hydrogels prepared from Chinese cabbage waste (CW) and banana peel (BP) using grafting techniques with acrylic acid (AA) and acrylamide (AAm). Free radical polymerization was initiated with ammonium persulfate (APS), and N, N'-methylene bisacrylamide (MBA) served as the crosslinking agent to fabricate the grafted polymer hydrogels. The hydrogels were subjected to detailed evaluations of their water absorption, reusability, and water retention capabilities through indoor experiments.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
Petroleum hydrocarbon pollutants in soil are challenging to biodegrade, negatively impacting plant growth as well as the metabolic activity and community structure of soil microorganisms. Microorganisms immobilized by seed carriers can synergistically contribute to the remediation of petroleum hydrocarbon-contaminated soil. We prepared a rape seed carrier with immobilized microorganism by seed coating (with a mixture of diatomaceous earth and bentonite as fillers) and microbial immobilization.
View Article and Find Full Text PDFPest Manag Sci
December 2024
Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, China.
Background: Discovering insecticidal proteins with high activity and strict insect specificity and applying them to the biological control of insect pests is of great significance. Oral LqhIT2 has insecticidal activity, which most other insecticidal neurotoxin proteins do not have, but the large-scale preparation of the toxin is difficult and one of the obstacles to determining its anti-insect potential for biological control.
Results: In this study, the expression level of recombinant LqhIT2 (rLqhIT2) in Pichia pastoris was as high as 1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!