AI Article Synopsis

  • Research explores how a high-fat and -sugar diet during pregnancy affects ADHD symptoms in youth, particularly focusing on early-onset persistent conduct problems (EOP) compared to low conduct problems (low CP).
  • It involves analyzing the relationship between maternal diet, IGF2 gene methylation, and ADHD symptoms in 164 youth from a study.
  • Findings suggest that a poor diet in pregnancy correlates with increased IGF2 methylation and higher ADHD symptoms in EOP youth, indicating that better dietary practices during pregnancy may help reduce ADHD risks.

Article Abstract

Background: Conduct problems (CP) and attention deficit hyperactivity disorder (ADHD) are often comorbid and have each been linked to 'unhealthy diet'. Early-life diet also associates with DNA methylation of the insulin-like growth factor 2 gene (IGF2), involved in fetal and neural development. We investigated the degree to which prenatal high-fat and -sugar diet might relate to ADHD symptoms via IGF2 DNA methylation for early-onset persistent (EOP) versus low CP youth.

Methods: Participants were 164 youth with EOP (n = 83) versus low (n = 81) CP drawn from the Avon Longitudinal Study of Parents and Children. We assessed if the interrelationships between high-fat and -sugar diet (prenatal, postnatal), IGF2 methylation (birth and age 7, collected from blood), and ADHD symptoms (age 7-13) differed for EOP versus low CP youth.

Results: Prenatal 'unhealthy diet' was positively associated with IGF2 methylation at birth for both the EOP and low CP youth. For EOP only: (a) higher IGF2 methylation predicted ADHD symptoms; and (b) prenatal 'unhealthy diet' was associated with higher ADHD symptoms indirectly via higher IGF2 methylation.

Conclusions: Preventing 'unhealthy diet' in pregnancy might reduce the risk of ADHD symptoms in EOP youth via lower offspring IGF2 methylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161647PMC
http://dx.doi.org/10.1111/jcpp.12589DOI Listing

Publication Analysis

Top Keywords

igf2 methylation
20
adhd symptoms
20
'unhealthy diet'
16
versus low
12
insulin-like growth
8
growth factor
8
factor gene
8
igf2
8
gene igf2
8
attention deficit
8

Similar Publications

Background: Recent studies show that N6-methyladenosine (m6A) plays an important role in the pathogenesis of the Alzheimer's disease (AD), while the mechanisms involved were studied insufficiently.

Aims: The present study aimed to explore the effect of human insulin-like growth factor 2 (IGF2) mRNA binding proteins 2 (IGF2BP2), one of the m6A-binding proteins on the progression of AD.

Materials & Methods: The mRNA and protein expression level were determined using RT-qPCR and western blot, respectively.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs) are defined as an incomplete closure of the neural tube (NT), with a prevalence of 1.2 per 1000 live births around the world. Methylation of the maternally imprinted gene Insulin-like growth factor 2 (IGF2) is one of the epigenetic mechanisms that contribute significantly to the development of NTDs.

View Article and Find Full Text PDF

Glutamine-αKG axis affects dentin regeneration and regulates osteo/odontogenic differentiation of mesenchymal adult stem cells via IGF2 m6A modification.

Stem Cell Res Ther

December 2024

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.

Background: Multi-lineage differentiation of mesenchymal adult stem cells (m-ASCs) is crucial for tissue regeneration and accompanied with metabolism reprogramming, among which dental-pulp-derived m-ASCs has obvious advantage of easy accessibility. Stem cell fate determination and differentiation are closely related to metabolism status in cell microenvironment, which could actively interact with epigenetic modification. In recent years, glutamine-α-ketoglutarate (αKG) axis was proved to be related to aging, tumorigenesis, osteogenesis etc.

View Article and Find Full Text PDF

Identification of responsible sequences which mutations cause maternal H19-ICR hypermethylation with Beckwith-Wiedemann syndrome-like overgrowth.

Commun Biol

December 2024

Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.

Beckwith-Wiedemann syndrome (BWS) is caused by a gain of methylation (GOM) at the imprinting control region within the Igf2-H19 domain on the maternal allele (H19-ICR GOM). Mutations in the binding sites of several transcription factors are involved in H19-ICR GOM and BWS. However, the responsible sequence(s) for H19-ICR GOM with BWS-like overgrowth has not been identified in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!