Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Respiratory activities are produced by medullary respiratory rhythm generators and are modulated from various sites in the lower brainstem, and which are then output as motor activities through premotor efferent networks in the brainstem and spinal cord. Over the past few decades, new knowledge has been accumulated on the anatomical and physiological mechanisms underlying the generation and regulation of respiratory rhythm. In this review, we focus on the recent findings and attempt to elucidate the anatomical and functional mechanisms underlying respiratory control in the lower brainstem and spinal cord.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5368202 | PMC |
http://dx.doi.org/10.1007/s12576-016-0475-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!